Myosin structural dynamics: mechanistic insights and therapeutic technology developments
2019-03
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Myosin structural dynamics: mechanistic insights and therapeutic technology developments
Alternative title
Authors
Published Date
2019-03
Publisher
Type
Thesis or Dissertation
Abstract
A major focus in molecular biophysics is to understand how protein structural isomerizations correspond to cellular and organismal physiology. The heart generates force to perfuse the body with oxygenated blood through contractile units in myocytes called sarcomeres. The primary force-generating protein in this contractile apparatus is myosin. Our lab has developed a strategic tool called transient time-resolved FRET, (TR)2FRET, to measure directly, with sub-nanometer and sub-millisecond resolution, the structural and biochemical kinetics of muscle myosin. This tool allows us to directly determine how myosin’s power stroke is coupled to the thermodynamic drive for force generation—the entropically-favored dissociation of inorganic phosphate. My research revealed that actin initiates the force-generating power stroke before phosphate dissociation, revealing how power output and efficiency are regulated by the distribution of myosin’s structural states. (TR)2FRET is also a powerful tool to examine small-molecule perturbations of structural transitions within myosin’s kinetic cycle. Omecamtiv mecarbil (OM), a putative heart failure therapeutic, increases cardiac contractility. My results demonstrate that OM stabilizes myosin’s pre-powerstroke structural state and significantly slows the actin-induced powerstroke. I also used transient biochemical and structural kinetics to elucidate the molecular mechanism of mavacamten, an allosteric cardiac myosin inhibitor and prospective therapeutic for hypertrophic cardiomyopathy. I found that mavacamten stabilizes an auto-inhibited state of two-headed cardiac myosin, not present in the single-headed myosin motor fragment. From these results, we predicted that cardiac myosin is regulated by an interaction between its two heads and the thick filament, and proposed that mavacamten stabilizes this state. I also investigated two mutations in the converter domain of myosin V to examine how point mutations alter specific structural transitions in the myosin motor’s ATPase cycle. Transient kinetics analyses and FRET-based experiments demonstrated that one mutation slowed the recovery-stroke rate constants, while a second mutation enhanced these steps. These mutations correspond to human mutations that give rise to dilated or hypertrophic cardiomyopathies, respectively. Together these experiments reveal new and important mechanistic insights into myosin’s structural dynamics and provide proof-of-concept results for developing therapeutic technology.
Description
University of Minnesota Ph.D. dissertation.March 2019. Major: Biochemistry, Molecular Bio, and Biophysics. Advisor: David Thomas. 1 computer file (PDF); xii, 245.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Rohde, John. (2019). Myosin structural dynamics: mechanistic insights and therapeutic technology developments. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/202918.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.