Boundary value problems for second-order elliptic equations and related topics.

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Boundary value problems for second-order elliptic equations and related topics.

Alternative title

Published Date

2021-05

Publisher

Type

Thesis or Dissertation

Abstract

We study perturbation results for boundary value problems for second-order elliptic partial differential equations, and the exponential decay of solutions to generalized Schr\"odinger operators. First, through the use of sawtooth domains and the extrapolation technique of Carleson measures, we show the stability of the solvability of the Dirichlet problem for (additive) Carleson perturbations of certain degenerate elliptic operators $-\text{div }A\nabla$ on domains with low dimensional boundaries (joint work with S. Mayboroda). Then, with a different method of proof, we expand these perturbation results to more abstract domains (including some domains with mixed-dimensional boundaries) and a broader type of Carleson perturbation, yielding some new applications (including to free boundary problems) (joint work with J. Feneuil). Next, together with S. Bortz, S. Hofmann, J.L. Luna Garc\'ia, and S. Mayboroda, we consider the uniformly elliptic operators $L=-\text{div }(A\nabla+B_1)+B_2\nabla+V$ on the upper half space $\mathbb R^{n+1}_+=\mathbb R^n\times\{t>0\}$, $n\geq3$, with $t-$independent coefficients, and we prove the $L^2$ solvability of the Dirichlet, Neumann and Regularity problems under the condition that $|B_1|,|B_2|,|V|^2$ have small $L^n(\mathbb R^n)$ norm. Finally, we show that for generalized magnetic Schr\"odinger operators $-(\nabla-i{\bf a})^TA(\nabla-i{\bf a})+V$, with certain conditions providing an uncertainty principle, resolvents and Lax-Milgram solutions exhibit exponential decay (in an $L^2-$sense), and we improve these estimates to upper pointwise exponential decay for the magnetic Schr\"odinger operator $-(\nabla-i{\bf a})^2$, and to sharp (that is, upper and lower) pointwise exponential decay for the Schr\"odinger operator on a non-homogeneous medium $-\text{div }A\nabla +V$ (joint work with S. Mayboroda).

Description

University of Minnesota Ph.D. dissertation. May 2021. Major: Mathematics. Advisor: Svitlana Mayboroda. 1 computer file (PDF); iii, 467 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Poggi Cevallos, Bruno. (2021). Boundary value problems for second-order elliptic equations and related topics.. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/223136.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.