Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Banking Groundwater - A study examining aquifer storage and recovery for groundwater sustainability in Minnesota

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Banking Groundwater - A study examining aquifer storage and recovery for groundwater sustainability in Minnesota

Published Date

Publisher

Type

Report

Abstract

Some of the more than 75% of Minnesotans who rely on groundwater may find it in short supply in the face of population, land-use and climate change. Aquifer storage and recovery (ASR) is a technological approach to treat and inject clean water into an aquifer for temporary storage. The hydrogeological characteristics and the chemistry of the source water and aquifer impact treatment needs prior to injection and after extraction. Aquifer properties that control how water moves determine the volume and rate of water injected. This study examined four different kinds of aquifers across Minnesota with unique pressures to determine their suitability for ASR. The study findings suggest three may be suitable for ASR. The Buffalo aquifer in Moorhead has variable injection capacity and multiple sources of water for injection. Water quality issues of arsenic, sulfate, manganese, and hardness would require treatment after extraction. The Jordan aquifer in Rochester faces increased pressure from growth and nitrate contamination in the surrounding agricultural areas. The wastewater treatment plant could provide adequate source water if treated. Woodbury faces pressure from increasing population and PFAS contamination of the Jordan aquifer. ASR could recharge groundwater from wastewater treatment plants and also be integrated with PFAS remediation scenarios by reinjection of treated groundwater. ASR is not recommended for the surficial sand aquifer in the Straight River Groundwater Management area in north central Minnesota because there is no source of water to make it a feasible option at this time. Cost-benefit analysis combined with a sensitivity analysis of economic factors should be a component of ASR project feasibility. Modified state well code and a streamlined permitting path would allow more successful development and deployment of ASR. State adoption of control over Class V injection wells from the USEPA is also necessary.

Keywords

Description

Related to

Replaces

Collections

Series/Report Number

Funding information

Funding for this project was provided by the Minnesota Environment and Natural Resources Trust Fund as recommended by the Legislative-Citizen Commission on Minnesota Resources (LCCMR). The methodology developed in this study is also partly supported by a grant from the Future Research Program (2E27030) funded by the Korea Institute of Science and Technology (KIST). Etienne Bresciani acknowledges support from the Korea Research Fellowship program funded by the Ministry of Science and ICT through the National Research Foundation of Korea (grant 2016H1D3A1908042).

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Bilotta, John P.; Arnold, William; Kang, Peter; Seonkyoo, Yoon; Shandilya, Raghwendra N.; Bresciani, Etienne; Lee, Seunghak; Kirk, Josh; Levers, Lucia; Bohman, Brian; Kirby, Eileen; Runkel, Anthony; Xiang, Galen; Gassman, Phillip; Valcu-Lisman, Adriana; Jennings, Carrie E.. (2021). Banking Groundwater - A study examining aquifer storage and recovery for groundwater sustainability in Minnesota. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/218325.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.