Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

An Introduction to Spatial Data Mining

Loading...
Thumbnail Image

View/Download File

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

An Introduction to Spatial Data Mining

Published Date

2018-08-08

Publisher

Type

Report

Abstract

The goal of spatial data mining is to discover potentially useful, interesting, and non-trivial patterns from spatial datasets. Spatial data mining is important for societal applications in public health, public safety, agriculture, environmental science, climate etc. For example,in epidemiology, spatial data mining helps to find areas with a high concentrations of disease incidents to manage disease outbreaks. Computerized methods are needed to discover spatial patterns since the volume and velocity of spatial data exceeds the number of human experts available to analyze it. In addition, spatial data has unique characteristics like spatial autocorrelation and spatial heterogeneity which violate the i.i.d (Independent and Identically Distributed data samples) assumption of traditional statistics and data mining methods. So, using traditional methods may miss patterns or may yield spurious patterns which are costly (e.g., stigmatization) in spatial applications. Also, there are other intrinsic challenges such as MAUP (Modifiable Areal Unit Problem) as illustrated by a current court case debating gerrymandering in elections. Spatial data mining considers the unique characteristics, and challenges of spatial data and domain knowledge of the target application to discover more accurate and interesting patterns.In this article, we discuss tools and computational methods of spatial data mining, focusing on the primary spatial pattern families: hotspot detection, colocation detection, spatial prediction and spatial outlier detection. Hotspot detection methods use domain information to model accurately more active and high density areas. Colocation detection methods find objects whose instances are in proximity of each other in a location. Spatial prediction approaches explicitly model neighborhood relationship of locations to predict target variables from input features. The goal of spatial outlier detection methods is to find data that are different from their neighbors.

Keywords

Description

Related to

Replaces

License

Series/Report Number

Technical Report; 18-013

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Golmohammadi, Jamal; Xie, Yiqun; Gupta, Jayant; Li, Yan; Cai, Jiannan; Detor, Samantha; Roh, Abigail; Shekhar, Shashi. (2018). An Introduction to Spatial Data Mining. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/216029.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.