Making national forest inventory data relevant for local forest management

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Making national forest inventory data relevant for local forest management

Published Date

2018-07

Publisher

Type

Thesis or Dissertation

Abstract

The national forest inventory conducted by the United States Forest Service Forest Inventory and Analysis (FIA) program provides information for strategic level decisions regarding national and regional management of forest ecosystem goods and services. However, the sampling intensity typically limits the application of traditional direct estimators to areas the size of a large county, if not larger. This dissertation describes methods for combining FIA data with auxiliary information to enhance its relevance for local forest management. Background information is provided on the way population estimates are currently produced, and how precision can be improved via satellite imagery. A study is described that uses features extracted from dense time series of Landsat imagery with a model-assisted direct estimator. The study examined the relative predictive power of land cover models incorporating extracted spectro-temporal features versus composite imagery alone. Non-parametric models were fitted for multiple attributes measured on FIA plots using all archived Landsat scenes for Minnesota from 2009-2013. The estimated coefficients developed by harmonic regression of the time series imagery were shown to be moderately to highly correlated with tree-level and land cover attributes. When comparing results for spectro-temporal features to monthly image composites, regression models had greater explained variance and classification models had greater overall and individual class accuracies. Finally, a study is presented that tested the performance of a proposed variant of the k-nearest neighbors algorithm for areas too small to use a direct estimator. Spectro-temporal features were extracted for one ecological unit in Minnesota. A simulated population of tree canopy cover was sampled at FIA plot locations. The proposed algorithm was used to fit a non-parametric model to predict tree canopy cover that incorporates the spectro-temporal features. The model was used to construct predictive intervals for spatial domains over a range of domain sizes, and the resultant tests showed the coverage probability approached the theoretical value for areas as small as 1200 hectares. The study suggests that, given good auxiliary data and models, the scale of valid inference using FIA data can approach what is needed for local decision makers.

Description

University of Minnesota Ph.D. dissertation. July 2018. Major: Natural Resources Science and Management. Advisor: Joseph Knight. 1 computer file (PDF); vi, 131 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Suggested citation


Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.