Between Dec 19, 2024 and Jan 2, 2025, datasets can be submitted to DRUM but will not be processed until after the break. Staff will not be available to answer email during this period, and will not be able to provide DOIs until after Jan 2. If you are in need of a DOI during this period, consider Dryad or OpenICPSR. Submission responses to the UDC may also be delayed during this time.
 

Structure and Chain Exchange Kinetics of Block Copolymer Micelles in Selective Solvents

Loading...
Thumbnail Image

Persistent link to this item

Statistics
View Statistics

Journal Title

Journal ISSN

Volume Title

Title

Structure and Chain Exchange Kinetics of Block Copolymer Micelles in Selective Solvents

Published Date

2017-08

Publisher

Type

Thesis or Dissertation

Abstract

Block copolymers can self-assemble into various structures, such as micelles and vesicles. Previous studies have shown that single chain exchange is the main mechanism for block copolymer micelles to achieve equilibrium. In this study, a new lower critical micelle temperature (LCMT) system, poly(methyl methacrylate)-block-poly(n-butyl methacrylate) in two room temperature ionic liquids, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide and 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide was developed, and its chain exchange kinetics were investigated using time-resolved small-angle neutron scattering (TR-SANS). In order to probe the effect of the core block length, the corona block length and the solvent selectivity on the chain exchange rate, we synthesized two series of protonated and deuterated copolymers, one with identical core block length and one with identical corona block length, as well as systematically varied the Flory-Huggins interaction parameter χ by tuning the ratio of the two ionic liquids in the solvent. Notably, the results show that the solvent selectivity has a remarkable effect on the chain exchange rate, and therefore we proposed a more elaborate function of χ for the energy barrier of chain expulsion, which is rationalized by a calculation in the spirit of Flory−Huggins theory. Besides the kinetic study, complementary dynamic light scattering (DLS) and small-angle X-ray scattering (SAXS) experiments were also conducted to investigate the structure of micelles. Particular emphasis was placed on elucidating the scaling relationship between the micelle core radii and the degree of polymerization of the core block in the copolymers.

Description

University of Minnesota Ph.D. dissertation. August 2017. Major: Chemistry. Advisor: Timothy Lodge. 1 computer file (PDF); x, 208 pages.

Related to

Replaces

License

Collections

Series/Report Number

Funding information

Isbn identifier

Doi identifier

Previously Published Citation

Other identifiers

Suggested citation

Ma, Yuanchi. (2017). Structure and Chain Exchange Kinetics of Block Copolymer Micelles in Selective Solvents. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/191499.

Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.