Identifying critical source areas for best management practice targeting in impaired Zumbro River watersheds using digital terrain analysis
2016-12
Loading...
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
Identifying critical source areas for best management practice targeting in impaired Zumbro River watersheds using digital terrain analysis
Alternative title
Authors
Published Date
2016-12
Publisher
Type
Thesis or Dissertation
Abstract
The Zumbro River Watershed drains 1,421 sq. mi. (3,680 km2, 910,337 ac.) of land in southeast Minnesota. Sedimentation within the watershed, particularly in Lake Zumbro and Lake Shady, has raised concerns over sediment-laden runoff entering waterways. Floods in 2010 filled the 190-acre Lake Shady with sediment, necessitating costly removal of its dam, and the 600-acre Lake Zumbro reservoir’s rising sediment levels has resulted in a planned $7 million dredging project. These issues have triggered public awareness campaigns in the watershed, including the “slow the flow” educational initiative designed to engage residents within the watershed to slow and reduce the amount of water running into the Zumbro River. Focus has also shifted upstream in order to reduce much of the sedimentation at the source – namely agricultural runoff – by pushing for conservation practice implementation. Currently, conservation practices in the watershed are implemented opportunistically, because a coordinated, watershed-wide approach for identifying critical sources of nonpoint source pollution, prioritizing sites, and planning implementation projects is absent. Critical source areas (CSAs) are small locations on a landscape that contribute a disproportionate amount of runoff to surface waters. Targeting CSAs can therefore give the best “bang for the buck” when optimizing best management practice cost/benefit ratios. The Zumbro watershed was therefore a prime candidate for CSA identification using a simple toolset that could be adopted by various agencies and conservationists throughout the state. Digital terrain analysis (DTA) – specifically the stream power index (SPI) – was chosen as the method to help locate CSAs based on its ease of application, simplicity, and documented success in similar studies. Three areas – each representing the main agroecoregions of the Zumbro River Watershed – were used to field validate the terrain analysis. Field accuracies associated with positively identifying surface erosional features using DTA methods ranged from 77-88%. DTA was 100% accurate when identifying features with the highest sediment delivery potentials (SDPs) for all three study areas.
Keywords
Description
University of Minnesota M.S. thesis.December 2016. Major: Water Resources Science. Advisor: David Mulla. 1 computer file (PDF); vii, 241 pages.
Related to
Replaces
License
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Timm, Dylan. (2016). Identifying critical source areas for best management practice targeting in impaired Zumbro River watersheds using digital terrain analysis. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/185105.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.