The mechanism of HIV-1 Tat-induced changes in NMDA receptor function
2014-08
Loading...
View/Download File
Persistent link to this item
Statistics
View StatisticsJournal Title
Journal ISSN
Volume Title
Title
The mechanism of HIV-1 Tat-induced changes in NMDA receptor function
Authors
Published Date
2014-08
Publisher
Type
Thesis or Dissertation
Abstract
Worldwide, more than 35 million people are currently infected with the human immunodeficiency virus (HIV). Approximately half of HIV-infected patients in the U.S. experience cognitive impairment despite effective control of viral load with combination anti-retroviral therapy (cART). The neurological complications that stem from an HIV infection are known as HIV-associated neurocognitive disorders (HAND). HAND ranges in severity from subtle difficulties with day-to-day tasks to severe functional impairment requiring assistance to survive. Although cART has improved patient survival by effectively managing viral load, it is ineffective at treating the majority of HAND. Consequently, the prevalence of HAND remains persistently high. The symptoms of HAND correlate with neuronal damage, such as synapse loss and dendritic beading. Such synaptodendritic damage results from HIV-infected cells within the central nervous system (CNS) shedding neurotoxic agents, such as the HIV-1 protein transactivator of transcription (Tat). Tat potentiates N-methyl D-aspartate (NMDA) receptor function allowing excessive Ca2+ influx leading to neurotoxicity. In this dissertation, two studies are outlined investigating the mechanisms of NMDA receptor (NMDAR) dysfunction following exposure to Tat. The graphical abstract summarizes these studies. First, the effect of Tat on NMDAR function was investigated. This study showed that Tat caused a time-dependent, biphasic change in NMDAR function. Initially, Tat potentiated NMDAR function via the low-density lipoprotein receptor-related protein (LRP) and activation of Src tyrosine kinase. Subsequently, NMDAR function adapted by gradually returning to basal levels following 24 h exposure to Tat and eventually falling below control responses by 48 h. Adaptation resulted from activation of a nitric oxide synthase (NOS), soluble guanylate cyclase (sGC), cGMP-dependent protein kinase (PKG) signaling pathway. Next, effectors downstream of PKG responsible for adaptation of NMDAR function were identified. Tat activated a signaling pathway including the small GTPase RhoA and Rho-associated protein kinase (ROCK). RhoA/ROCK activation caused remodeling of the actin cytoskeleton resulting in reduced NMDAR function. Taken together, these studies indicate that Tat causes a biphasic change in NMDAR function. Potentiation of NMDAR function is mediated by LRP-dependent activation of Src kinase; adaptation of NMDAR function occurs after activation of a NOS/sGC/PKG signaling pathway leading to RhoA/ROCK-mediated remodeling of the actin cytoskeleton. Adaptation of NMDAR function may be a neuroprotective mechanism to reduce excess Ca2+ influx and prevent neurotoxicity. These studies provide molecular and temporal detail of the dynamic changes in NMDAR function following exposure to Tat and offer insight into potential therapeutic targets for the treatment of HAND.
Keywords
Description
University of Minnesota Ph.D. dissertation. August 2014. Major: Pharmacology. Advisor: Stanley A. Thayer. 1 computer file (PDF); xiv, 125 pages.
Related to
Replaces
License
Collections
Series/Report Number
Funding information
Isbn identifier
Doi identifier
Previously Published Citation
Other identifiers
Suggested citation
Krogh, Kelly A.. (2014). The mechanism of HIV-1 Tat-induced changes in NMDA receptor function. Retrieved from the University Digital Conservancy, https://hdl.handle.net/11299/165795.
Content distributed via the University Digital Conservancy may be subject to additional license and use restrictions applied by the depositor. By using these files, users agree to the Terms of Use. Materials in the UDC may contain content that is disturbing and/or harmful. For more information, please see our statement on harmful content in digital repositories.