Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "system identification"

Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Fault-Tolerant Flight Control Using One Aerodynamic Control Surface
    (2018-06) Venkataraman, Raghu
    Small unmanned aircraft systems (UAS) have recently found increasing civilian and commercial applications. On-board fault management is one of several technical challenges facing their widespread use. The aerodynamic control surfaces of a fixed-wing UAS perform the safety-critical functions of stabilizing and controlling the aircraft. Failures in one or more of these surfaces, or the actuators controlling them, may be managed by repurposing the other control surfaces and/or propulsive devices. A natural question arises in this context: What is the minimum number of control surfaces required to adequately control a handicapped aircraft? The answer, in general, depends on the control surface layout of the aircraft under consideration. For some aircraft, however, the answer is one. If the UAS is equipped with only two control surfaces, such as the one considered in this thesis, then this limiting case is reached with a single control surface failure. This thesis demonstrates, via multiple flight tests, the autonomous landing of a UAS using only one aerodynamic control surface and the throttle. In seeking to arrive at these demonstrations, this thesis makes advances in the areas of model-based fault diagnosis and fault-tolerant control. Specifically, a new convex method is developed for synthesizing robust output estimators for continuous-time, uncertain, gridded, linear parameter-varying systems. This method is subsequently used to design the fault diagnosis algorithm. The detection time requirement of this algorithm is established using concepts from loss-of-control. The fault-tolerant controller is designed to operate the single control surface for lateral control and the throttle for total energy control. The fault diagnosis algorithm and the fault-tolerant controller are both designed using a model of the aircraft. This model is first developed using physics-based first-principles and then updated using system identification experiments. Since this aircraft does not have a rudder, the identification of the lateral-directional dynamics requires some novelty.
  • Loading...
    Thumbnail Image
    Item
    Modeling for Wind Farm Control
    (2016-05) Annoni, Jennifer
    The focus of this thesis is to improve the economic viability of wind energy and help integrate wind into the electric system. Wind energy plays a key role in meeting the renewable energy demands in the United States. Currently, wind farms experience a significant loss of power production due to the interactions between wind turbines when their individual performance is maximized. The main technical goal of this research is to develop techniques to obtain simplified models that will be used to properly coordinate wind turbines for more efficient operation of wind farms.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues