Browsing by Subject "soil respiration"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Relative importance of soil properties and microbial community for soil functionality: Insights from a microbial swap experiment(Wiley, 2016) Delgado-Baquerizo, M; Grinyer, J; Reich, Peter BThe most accepted theories in soil ecology suggest that broad (e.g. respiration) and specialized (e.g. denitrification) functions are affected differently by resource availability and microbial communities in terrestrial ecosystems. However, there is a lack of experimental approaches quantifying and separating the role of microbial communities from the effect of soil abiotic properties on different aspects of soil ecosystem functionality. Here, we conducted a full-factorial design microcosm experiment and used random forest and structural equation modelling (SEM) analyses to evaluate the role and the relative importance of soil properties (sterile soils A, B and C differing in abiotic attributes) and microbial communities (microbial inoculums from soils A, B and C) in driving soil respiration (i.e. broad functioning), denitrification (i.e. specialized functioning) and four enzyme activities and carbon (C) and nitrogen (N) availability in soil. Soils with the higher total C (soils B and C) promoted the highest soil C and N availability, enzyme activities and broad functioning (i.e. soil respiration); however, we did not find any effect of total C on specialized functions (i.e. denitrification rates). Random forest analyses showed that both soil properties (i.e. total C and pH) and microbial abundance determined broad functioning (i.e. soil respiration), as well as the production of enzyme activities, and C and N availability in soil. However, we found that microbial communities were more important than soil properties for modulating specialized functioning (i.e. denitrification rates) in soil environments. Finally, our SEM also indicated that broad functioning, which is widely distributed across living organisms, is limited by both resource availability and microbial abundance. Furthermore, specialized functioning, which is conducted by particular groups of organisms, may be highly sensitive to changes in the microbial community. Overall, our findings provide direct experimental evidence for the relative importance of soil properties and microbial communities on broad and specialized functioning. Such evidence helps advance our understanding of different drivers of soil ecosystem functioning which will be crucial to developing an ecologically relevant theory about below-ground ecosystem functioning.Item Temperature response of soil respiration largely unaltered with experimental warming(2016) Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, AlbertThe respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.