Browsing by Subject "shell theories"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item The infinite hierarchy of elastic shell models: some recent results and a conjecture(2009-07-09) Lewicka, Marta; Pakzad, RezaWe summarize some recent results of the authors and their collaborators, regarding the derivation of thin elastic shell models (for shells with mid-surface of arbitrary geometry) from the variational theory of $3$d nonlinear elasticity. We also formulate a conjecture on the form and validity of infinitely many limiting $2$d models, each corresponding to its proper scaling range of the body forces in terms of the shell thicknessItem The matching property of infinitesimal isometries on elliptic surfaces and elasticity of thin shells(2008-10-14) Lewicka, Marta; Mora, Maria Giovanna; Pakzad, Mohammad RezaUsing the notion of \Gamma-convergence, we discuss the limiting behavior of the 3d nonlinear elastic energy for thin elliptic shells, as their thickness h converges to zero, under the assumption that the elastic energy of deformations scales like h^\beta with 2 < \beta < 4. We establish that, for the given scaling regime, the limiting theory reduces to the linear pure bending. Two major ingredients of the proofs are: the density of smooth infinitesimal isometries in the space of W^{2,2} first order infinitesimal isometries, and a result on matching smooth infinitesimal isometries with exact isometric immersions on smooth elliptic surfaces.Item A note on convergence of low energy critical points of nonlinear elasticity functionals, for thin shells of arbitrary geometry(2008-11-26) Lewicka, MartaWe prove that the critical points of the $3$d nonlinear elasticity functional over a thin shell of arbitrary geometry and of thickness $h$, as well as the weak solutions to the static equilibrium equations (formally the Euler Lagrange equations associated to the elasticity functional) converge, in the limit of vanishing thickness $h$, to the critical points of the generalized von Karman functional on the mid-surface, recently derived in [14]. This holds provided the elastic energy of the $3$d deformations scale like $h^4$ and the magnitude of the body forces scale like $h^3$.Item Shell theories arising as low energy \Gamma-limit of 3d nonlinear elasticity(2008-10-02) Lewicka, Marta; Mora, Maria Giovanna; Pakzad, Mohammad RezaWe discuss the limiting behavior (using the notion of \Gamma-limit) of the 3d nonlinear elasticity for thin shells around an arbitrary smooth 2d surface. In particular, under the assumption that the elastic energy of deformations scales like h4, h being the thickness of a shell, we derive a limiting theory which is a generalization of the von Karman theory for plates.