Browsing by Subject "resistance gene"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Development of a genetic linkage map for Sharon goatgrass (Aegilops sharonensis) and mapping of a leaf rust resistance gene(Genome, 2013) Steffenson, Brian; Olivera, P.D.; Kilian, A.; Wenzl, P.Aegilops sharonensis (Sharon goatgrass), a diploid wheat relative, is known to be a rich source of disease resistance genes for wheat improvement. To facilitate the transfer of these genes into wheat, information on their chromosomal location is important. A genetic linkage map of Ae. sharonensis was constructed based on 179 F2 plants derived from a cross between accessions resistant (1644) and susceptible (1193) to wheat leaf rust. The linkage map was based on 389 markers (377 Diversity Arrays Technology (DArT) and 12 simple sequence repeat (SSR) loci) and was comprised of 10 linkage groups, ranging from 2.3 to 124.6 cM. The total genetic length of the map was 818.0 cM, with an average interval distance between markers of 3.63 cM. Based on the chromosomal location of 115 markers previously mapped in wheat, the four linkage groups of A, B, C, and E were assigned to Ae. sharonensis (Ssh) and homoeologous wheat chromosomes 6, 1, 3, and 2. The single dominant gene (designated LrAeSh1644) conferring resistance to leaf rust race THBJ in accession 1644 was positioned on linkage group A (chromosome 6Ssh) and was flanked by DArT markers wpt-9881 (at 1.9 cM distal from the gene) and wpt-6925 (4.5 cM proximal). This study clearly demonstrates the utility of DArT for genotyping uncharacterized species and tagging resistance genes where pertinent genomic information is lacking.Item Validation of rice blast resistance genes in barley using a QTL mapping population and near-isolines(Breeding Science, 2009) Steffenson, Brian; Kongprakhon, Phinyarat; Cuesta-Marcos, Alfonso; Hayes, Patrick M.; Richardson, Kelley L.; Sirithunya, Pattama; Sato, Kazuhiro; Toojinda, TheerayuthThere are prior reports of Pyricularia grisea—the causal agent of blast of rice—causing disease in barley. In order to determine the specificity of this resistance in barley, we extended our previous mapping efforts to include blast isolates from barley and rice grown in Thailand and we assessed two resistance phenotypes: leaf blast (LB) and neck blast (NB). The largest-effect resistance QTL, on chromosome 1H, was associated with NB and LB and is located in a region rich in resistance genes, including QTL conferring resistance to stripe rust (incited by Puccinia striiformis f. sp. hordei) and the mildew (Blumeria graminis f. sp. hordei) resistance gene Mla. The LB, NB and mildew resistance alleles trace to one parent (Baronesse) whereas the stripe rust resistance allele traces to the other parent (BCD47) of the mapping population. Baronesse is the susceptible recurrent parent of a set of near-isogenic lines (NILs) for three stripe rust resistance QTL, including one on 1H. Unigene (EST) derived single nucleotide polymorphism haplotypes of these NILs were aligned with the blast mapping population QTL using Mla as an anchor. Baronesse and all NILs without the 1H introgression were resistant to LB and NB. However, two NILs with the 1H introgression were resistant to LB and NB. Both are resistant to stripe rust. Therefore, the QTL conferring resistance to stripe rust is separable by recombination from the blast resistance QTL.