Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "remote homology detection"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Learning High-Order Relations for Network-Based Phenome-Genome Association Analysis
    (2019-08) Petegrosso, Raphael
    An organism's phenome is the expression of characteristics from genetic inheritance and interaction with the environment. This includes simple physical appearance and traits, and even complex diseases. In human, the understanding of the relationship of such features with genetic markers gives insights into the mechanisms involved in the expression, and can also help to design targeted therapies and new drugs. In other species, such as plants, correlation of phenotypes with genetic mutations and geoclimatic variables also assists in the understanding of evolutionary global diversity and important characteristics such as flowering time. In this thesis, we propose to use high-order machine learning methods to help in the analysis of phenome through the associations with biological networks and ontologies. We show that, by combining biological networks with functional annotation of genes, we can extract high-order relations to improve the discovery of new candidate associations between genes and phenotypes. We also propose to detect high-order relations among multiple genomics datasets, geoclimatic features, and interactions among genes, to find a feature representation that can be utilized to successfully predict phenotypes. Experiments using the Arabidopsis thaliana species shows that our approach does not only contribute with an accurate predictive tool, but also brings an intuitive alternative for the analysis of correlation among plant accessions, genetic markers, and geoclimatic variables. Finally, we propose a scalable approach to solve challenges inherited from the use of massive biological networks in phenome analysis. Our low-rank method can be used to process massive networks in parallel computing to enable large-scale prior knowledge to be incorporated and improve predictive power.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues