Browsing by Subject "recruitment"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item CO2, nitrogen, and diversity differentially affect seed production of prairie plants(2009) Hillerislambers, J; Harpole, W S; Schnitzer, S; Tilman, D; Reich, Peter BPlant species composition and diversity is often influenced by early life history stages; thus, global change could dramatically affect plant community structure by altering seed production. Unfortunately, plant reproductive responses to global change are rarely studied in field settings, making it difficult to assess this possibility. To address this issue, we quantified the effects of elevated CO2, nitrogen deposition, and declining diversity on inflorescence production and inflorescence mass of 11 perennial grassland species in central Minnesota, USA. We analyzed these data to ask whether (1) global change differentially affects seed production of co-occurring species; (2) seed production responses to global change are similar for species within the same functional group (defined by ecophysiology and growth form); and (3) seed production responses to global change match productivity responses. We found that, on average, allocation to seed production decreased under elevated CO2, although individual species responses were rarely significant due to low power (CO2 treatment df = 2). The effects of nitrogen deposition on seed production were similar within functional groups: C4 grasses tended to increase while C3 grasses tended to decrease allocation to seed production. Responses to nitrogen deposition were negatively correlated to productivity responses, suggesting a trade-off. Allocation to seed production of some species responded to a diversity gradient, but responses were uncorrelated to productivity responses and not similar within functional groups. Presumably, species richness has complex effects on the biotic and abiotic variables that influence seed production. In total, our results suggest that seed production of co-occurring species will be altered by global change, which may affect plant communities in unpredictable ways. Although functional groups could be used to generalize seed production responses to nitrogen deposition in Minnesota prairies, we caution against relying on them for predictive purposes without a mechanistic understanding of how resource availability and biotic interactions affect seed production.Item Data and model code for assessing dabbling duck age ratios and corresponding environmental correlates in the North American Prairies, 1969-2015(2018-05-16) Specht, Hannah M; Arnold, Todd W; spech030@umn.edu; Specht, Hannah MFecundity estimates for demographic modeling are difficult to acquire at the regional spatial scales that correspond to climate shifts, land use impacts or habitat management programs, yet are important for evaluating such effects. While waterfowl managers have historically used harvest-based age ratios to assess fecundity at continental scales, widely available age ratios from late-summer banding data present an underutilized opportunity to examine a regional fecundity index with broad temporal replication. We used age ratios from banding data and hierarchical mixed-effect models to examine how fecundity of five North American dabbling duck species was affected by temporal variation in hydrological cycles, intra- and inter-specific density dependence and alternate prey availability, and whether those relationships were consistent across a broad geographic area. The data and code for these analysis are included here.Item Data in Support of Widespread declines in walleye recruitment following zebra mussel invasion in Minnesota lakes(2023-04-26) Kundel, H; Hansen, Gretchen J A; kunde058@umn.edu; Kundel, H; University of Minnesota Dr. Hansen Research TeamInvasive zebra mussels (Dreissena polymorpha) alter lake ecosystems and can negatively affect first-year growth of walleye (Sander vitreus), potentially lowering walleye overwinter survival and recruitment success. Zebra mussel effects also vary among lakes, and walleye resilience to the effects of zebra mussels may vary depending on lake characteristics (e.g., depth, clarity) or fish community composition. To test these hypotheses, we used data from 1,438 surveys across 348 lakes collected between 1993 and 2019 to measure walleye recruitment, defined as relative abundance of age-0 walleye in their first fall. We fitted Bayesian hierarchical models to quantify the effects of zebra mussels on walleye recruitment while accounting for the effects of lake temperature, surface area, and water clarity. A before-after-control-impact (BACI)-like design was used to account for potential changes in recruitment due to factors other than zebra mussel invasion. Age-0 walleye recruitment to their first fall was ~41% lower (95% credible interval of 38 - 44%) in lakes containing zebra mussels compared to uninvaded lakes. Invaded lakes had higher recruitment prior to zebra mussel invasion than lakes that remain uninvaded. Conversely, walleye recruitment increased slightly (7% (95% credible interval 2 - 11%)) in lakes without zebra mussels over the same time period. Walleye recruitment was higher in larger lakes and lakes with lower water clarity. Water temperature, as indexed by degree days (base 5 °C), did not affect walleye recruitment. Our results demonstrate negative effects of zebra mussel invasion on walleye population dynamics at a landscape scale.