Browsing by Subject "population structure"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Environmental Association Analyses Identify Candidates for Abiotic Stress Tolerance in Glycine soja, the Wild Progenitor of Cultivated Soybeans(2016-09-26) Anderson, J; Kono, Thomas J Y; Stupar, Robert M; Kantar, Michael B; Morrell, Peter L; kant0063@umn.edu; Kantar, Michael BUnderstanding the genetics basis of adaption is a fundamental goal of biological research. The present study explores an ex situ conservation collection, the USDA germplasm collection, genotyped at 32,416 SNPs, to identify population structure and test for associations with bioclimatic and biophysical variables in Glycine soja, the wild progenitor of Glycine max (soybean). Candidate loci were detected that putatively contribute to adaptation to abiotic stresses.Item Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species(Nature Publishing Group, 2015) Reich, Peter B; Sendall, Kerrie M; Rice, Karen; Rich, Roy L; Stefanski, Artur; Hobbie, Sarah E; Montgomery, Rebecca APopulations near the warm edge of species ranges may be particularly sensitive to climate change, but lack of empirical data on responses to warming represents a key gap in understanding future range dynamics. Herein we document the impacts of experimental warming on the performance of 11 boreal and temperate forest species that co-occur at the ecotone between these biomes in North America. We measured in situ net photosynthetic carbon gain and growth of >4,100 juvenile trees from local seed sources exposed to a chamberless warming experiment that used infrared heat lamps and soil heating cables to elevate temperatures by +3.4 °C above- and belowground for three growing seasons across 48 plots at two sites. In these ecologically realistic field settings, species growing nearest their warm range limit exhibited reductions in net photosynthesis and growth, whereas species near their cold range limit responded positively to warming. Differences among species in their three-year growth responses to warming parallel their photosynthetic responses to warming, suggesting that leaf-level responses may scale to whole-plant performance. These responses are consistent with the hypothesis, from observational data and models, that warming will reduce the competitive ability of currently dominant southern boreal species compared with locally rarer co-occurring species that dominate warmer neighbouring regions. © 2015 Macmillan Publishers Limited. All rights reserved.Item SNP Genotyping Data from the Barley Experimental Population from "Two Genomic Regions Contribute Disproportionately to Geographic Differentiation in Wild Barley"(2016-07-19) Fang, Zhou; Gonzales, Ana M; Clegg, Michael T; Smith, Kevin P; Muehlbauer, Gary J; Steffenson, Brian J; Morrell, Peter L; pmorrell@umn.edu; Morrell, Peter LTwo Barley Oligo Pool Assay chips (BOPA 1 and 2) were genotyped from the Wild Barley Diversity Collection. Due to its broad geographic distribution and ecological adaptation, this collection is a valuable source of potentially useful genes.