Browsing by Subject "polymer chemistry"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Supporting data for Functionalized Polymersomes from a Polyisoprene-Activated Polyacrylamide Precursor(2021-01-20) Werber, Jay R; Peterson, Colin; Van Zee, Nicholas J; Hillmyer, Marc A; hillmyer@umn.edu; Hillmyer, Marc A; Hillmyer Research GroupThese files contain primary data along with associated output from instrumentation supporting all results reported in the associated manuscript referenced below. In this study, polymersomes with novel surface chemistries were synthesized using a post-polymerization modification approach, which enabled us to characterize the soluble precursor polymers and then modify the polymers to create highly amphiphilic block polymers.Item Supporting data for Polymeric medical sutures: An exploration of polymers and green chemistry(2018-01-17) Knutson, Cassandra M; Schneiderman, Deborah K; Yu, Ming; Javner, Cassidy H; Distefano, Mark D; Wissinger, Jane E; jwiss@umn.edu; Wissinger, Jane EThese files contain data along with associated output from instrumentation supporting all results reported in Knutson, C. M.; Schneiderman, D. K.; Yu, M.; Javner, C. H.; Distefano, M. D.; Wissinger, J. E. Polymeric medical sutures: An exploration of polymers and green chemistry. J. Chem. Educ. 2017, 94, 1761–1765. In Knutson, et. al. it was found that with new K–12 national science standards emerging, there is an increased need for experiments that integrate engineering into the context of society. Here we describe a chemistry experiment that combines science and engineering principles while introducing basic polymer and green chemistry concepts. Using medical sutures as a platform for investigating polymers, students explore the physical and mechanical properties of threads drawn from poly(ε-caprolactone) samples of different molecular masses and actual purchased absorbable and nonabsorbable medical sutures. An inquiry-based part of the experiment tasks students with designing their own experiment to probe the potential of melt blending poly(ε-caprolactone) with commercially available polylactide products in order to modify the properties of the “sutures” drawn. Through these lessons students gain an appreciation for the importance of plastics in our society and how scientists are working to develop more sustainable alternatives. Overall, this laboratory experiment provides a feasible, versatile, sophisticated laboratory experience that engages students in a relatable topic and meets many of the Next Generation Science Standards.Item Supporting Data for Tandem ROMP/Hydrogenation Approach to Hydroxy-Telechelic Linear Polyethylene(2022-04-11) Sample, Caitlin S; Kellstedt, Elizabeth A; Hillmyer, Marc A; hillmyer@umn.edu; Hillmyer, Marc A; Hillmyer GroupThese files contain data along with associated output from instrumentation supporting all results reported in Sample et. al. "Tandem ROMP/Hydrogenation Approach to Hydroxy-Telechelic Linear Polyethylene." In Sample et. al. we found: Hydroxy-telechelic polycycloalkenamers have long been synthesized using ring-opening metathesis polymerization (ROMP) in the presence of an acyclic olefin chain-transfer agent (CTA); however, this route typically requires protected diols in the CTA due to the challenge of alcohol-mediated degradation of ruthenium metathesis catalysts that can not only deactivate the catalysts but also compromise the CTA. We demonstrate the synthesis and implementation of a new hydroxyl-containing CTA in which extended methylene spacers isolate the olefin and alcohol moieties to mitigate decomposition pathways. This CTA enabled the direct ROMP synthesis of hydroxy-telechelic polycyclooctene with controlled chain lengths dictated by the initial ratio of monomer to CTA. The elimination of protection/deprotection steps resulted in improved atom economy. Subsequent hydrogenation of the backbone olefins was performed by a one-pot, catalytic approach employing the same ruthenium alkylidene catalyst used for the initial ROMP. The resultant approach is a stream-lined, atom-economic, and low-waste route to hydroxy-telechelic linear polyethylene that uses a green solvent, succeeds with miniscule quantities of catalyst (0.005 mol%), and requires no additional purification steps.