Browsing by Subject "photomultiplication"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Supporting Data for 3D Printed Skin-Interfaced UV-Visible Hybrid Photodetectors(2022-02-16) Ouyang, Xia; Su, Ruitao; Ng, Daniel Wai Hou; Han, Guebum; Pearson, David R; McAlpine, Michael C; mcalpine@umn.edu; McAlpine, Michael C; University of Minnesota McAlpine Research GroupPhotodetectors that are intimately interfaced with human skin and measure real-time optical irradiance are appealing in the medical profiling of photosensitive diseases. Developing compliant devices for this purpose requires the fabrication of photodetectors with ultraviolet (UV)-enhanced broadband photoresponse and high mechanical flexibility, to ensure precise irradiance measurements across the spectral band critical to dermatological health when directly applied onto curved skin surfaces. Here, we report a fully 3D printed flexible UV-visible photodetector array that incorporates a hybrid organic-inorganic material system and is integrated with a custom-built portable console to continuously monitor broadband irradiance in-situ. The active materials are formulated by doping polymeric photoactive materials with zinc oxide nanoparticles in order to improve the UV photoresponse and trigger a photomultiplication effect. We demonstrate the ability of our stand-alone skin-interfaced light intensity monitoring system to detect natural irradiance within the wavelength range of 310 nm to 650 nm for nearly 24 hours.