Browsing by Subject "nitrification"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Seasonal Variations In The Activated Sludge Microbiome With Respect To Seasonal Nitrification Failure(2020-07) Johnston, JulietActivated sludge consists of a diverse microbial community that is used by wastewater engineers to metabolize excessive nutrients in domestic wastewater so that these excessive nutrients do not impact downstream waters. While most biological contaminant removal processes, such as carbon (measured as Biological Oxygen Demand) and phosphorous removal are performed consistently year-round, nitrification performance significantly declines in cold temperatures. The seasonal decline in nitrification performance is known as seasonal nitrification failure. To understand seasonal nitrification failure, this thesis analyzed triplicate, full-scale, sequencing batch reactors throughout several years to investigate seasonal variations in the activated sludge microbiome with respect to community composition (16S rRNA gene), the metabolically active composition (16S rRNA transcript), and expression of amoA (ammonia monooxygenase) which is a key-nitrification functional gene. There were 114 OTUs (operational taxonomic units), which were consistently present in all three reactors, every week, for an entire year and together comprise 74.3% - 84.0% of the entire community. The changes in abundances of these OTUs and other seasonally present OTUs make each season’s community significantly distinct from each other. The community composition was also significantly distinct from the protein-synthesis composition throughout the entire year. While the entire activated sludge community and protein-synthesis compositions fluctuated, the ammonia-oxidizing community was at a constant abundance throughout the year based on tracking known ammonia oxidizers and the amoA functional gene despite seasonal nitrification failure. While the amoA transcripts declined with the seasonally cold temperatures, which explain the seasonal nitrification failure’s decline in activity, the known-ammonia oxidizer protein-synthesis potential measured by Nitrosomonas sp. 16S rRNA transcripts did not significantly decline with temperature. This suggests there are other metabolic activities performed by the known ammonia oxidizing community to maintain stable community abundance and protein synthesis potential when ammonia oxidization is no longer the most thermodynamically favorable metabolism. This result changes the narrative that seasonal nitrification failure occurs due to declining abundances of ammonia oxidizing organisms in cold temperatures, and instead provides insight as to how amoA expression seasonally changes with the complex and seasonally dynamic microbial ecology of the activated sludge community. Additionally, this research provides the most comprehensive baseline of the activated sludge communities seasonal composition, protein-synthesis potential and amoA expression to date. Future researchers can use these results to investigate specific highlighted seasonally variant OTUs which may influent the activated sludge microbiome, as well as explore the additional roles known ammonia oxidizers play in this complex microbial system.Item SERGEI WINOGRADSKY: A FOUNDER OF MODERN MICROBIOLOGY AND THE FIRST MICROBIAL ECOLOGIST(FEMS Microbiology Reviews, 2011-08-11) Dworkin, MartinSergei Winogradsky, was born in Russia in 1856 and was to become a founder of modern microbiology. After his Master’s degree work on the nutrition and growth physiology of the yeast Mycoderma vini at the University of St.Petersburg, he joined the laboratory of Anton DeBary in Strassburg. There he carried out his studies on the sulfur-oxidizing bacterium Beggiatoa which resulted in his formulation of the theory of chemolithotrophy. He then joined the Swiss Polytechnic Institute in Zurich where he did his monumental work on bacterial nitrification. He isolated the first pure cultures of the nitrifying bacteria and confirmed that they carried out the separate steps of the conversion of ammonia to nitrite and of nitrite to nitrate. This led directly to the concept of the cycles of sulfur and nitrogen in Nature. He returned to Russia and there was the first to isolate a free-living dinitrogen-fixing bacterium. In the flush of success, he retired from science and spent 15 years on his familial estate in the Ukraine. The Russian revolution forced him to flee Russia.He joined the Pasteur Institute in Paris where he spent his remaining 24 years initiating and developing the field of microbial ecology. He died in 1952.