Browsing by Subject "metal"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Spin Relaxation and Size Effects in Cu and Al Nanowires(2018-12) Watts, JustinThis dissertation focuses on the quantification of dominant spin relaxation sources in Cu and Al. In light metals, the Elliott-Yafet (EY) theory is widely acknowledged to describe the proportionality between the spin relaxation rate and the momentum scattering rate for a single scattering source. However, the quantitative impact on spin relaxation due to the presence of multiple scattering sources has remained poorly understood. By integrating Cu and Al nanowires into non-local spin valves (NLSVs), spin and charge transport were separately characterized. We test a proposed generalization of the EY theory, where each scattering source is assigned a unique EY proportionality constant. Verification of the generalized EY theory and quantification of the EY constants for specific scattering sources (e.g., phonons, surfaces, grain boundaries, non-magnetic impurities, and local moments), then enables predictive spin relaxation models and improves understanding of specific spin relaxation sources in these model metals.