Browsing by Subject "mechanical properties"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Berkovich nanoindentation and FTIR data describing the effect of water on olivine plasticity(2023-08-28) Kumamoto, Kathryn, M; Breithaupt, Thomas, P; Hansen, Lars, N; Wallis, David; Li, Bo-Shiuan; Armstrong, David, EJ; Goldsby, David, L; Li, Yang; Warren, Jessica, M; Wilkinson, Angus, J; lnhansen@umn.edu; Hansen, Lars, N; Rock and Mineral Physics LabThis data set contains data collected as part of a study to determine the influence of dissolved hydrogen on the mechanical properties of olivine. Nanoindentation experiments were conducted to measure the hardness of both pristine olivine crystals and olivine crystals predoped with hydrogen. The hydrogen content of samples was assessed with Fourier-transform infrared spectroscopy (FTIR). This data set includes mechanical data from indentation experiments as well as spectra from FTIR measurements.Item An in-situ analytical scanning and transmission electron microscopy investigation of structure-property relationships in electronic materials(2014-08) Wagner, AndrewAs electronic and mechanical devices are scaled downward in size and upward in complexity, macroscopic principles no longer apply. Synthesis of three-dimensionally confined structures exhibit quantum confinement effects allowing, for example, silicon nanoparticles to luminesce. The reduction in size of classically brittle materials reveals a ductile-to-brittle transition. Such a transition, attributed to a reduction in defects, increases elasticity. In the case of silicon, elastic deformation can improve electronic carrier mobility by over 50%, a vital attribute of modern integrated circuits. The scalability of such principles and the changing atomistic processes which contribute to them presents a vitally important field of research. Beginning with the direct observation of dislocations and lattice planes in the 1950s, the transmission electron microscope has been a powerful tool in materials science. More recently, as nanoscale technologies have proliferated modern life, their unique ability to spatially resolve nano- and atomic-scale structures has become a critical component of materials research and characterization. Signals produced by an incident beam of high-energy electrons enables researchers to both image and chemically analyze materials at the atomic scale. Coherently and elastically-scattered electrons can be collected to produce atomic-scale images of a crystalline sample. New specimen stages have enabled routine investigation of samples heated up to 1000 °C and cooled to liquid nitrogen temperatures. MEMS-based transducers allow for sub-nm scale mechanical testing and ultrathin membranes allow study of liquids and gases. Investigation of a myriad of previously "unseeable" processes can now be observed within the TEM, and sometimes something new is found within the old. High-temperature annealing of pure a Si:H films leads to crystallization of the film. Such films provide higher carrier mobility compared to amorphous films, offering improved photovoltaic performance. The annealing process, however, requires exceptionally high temperature (> 600 °C) and time (tens of hours), limiting throughput and costing energy. In an effort to fabricate polycrystalline solar cells at lower cost, large (~30 nm) silicon nanocrystals were incorporated into hydrogenated amorphous silicon (a Si:H) thin films. When annealed, the embedded nanocrystals were expected to act as heterogeneous nucleation sites and crystallize the surrounding amorphous matrix. When observed in the TEM, an additional and unexpected event was observed. At the boundary between the nanocrystal and amorphous matrix, nanocavities were observed to form. Continued annealing resulted in movement of the cavities away from the nanocrystal while leaving behind a crystalline tail. The origins and fundamental mechanisms of this phenomenon were examined by in-situ heating TEM and ex-situ crystallographic TEM techniques. We demonstrate a mechanism of solid-phase crystallization (SPC) enabled by nanoscale cavities formed at the interface between an hydrogenated amorphous silicon film and embedded 30 nm to 40 nm Si nanocrystals. The nanocavities, 10 nm to 25 nm across, have the unique property of an internal surface that is part amorphous and part crystalline, enabling capillarity-driven diffusion from the amorphous to the crystalline domain. The nanocavities propagate rapidly through the amorphous phase, up to five times faster than the SPC growth rate, while "pulling behind" a crystalline tail. It is shown that twin boundaries exposed on the crystalline surface accelerate crystal growth and influence the direction of nanocavity propagation. HASH(0x7febe3ca40b8) The mechanical properties and mechanisms of plasticity in these same silicon nanocubes have also been investigated. The strain-dependent mechanical properties and the underlying mechanisms governing the elastic-plastic response are explored in detail. Elastic strains approaching 7% and flow stresses of 11 GPa were observed, significantly higher than that observed in other nanoscale volumes of Si. In-situ imaging revealed the formation of 5 nm dislocation embryos at 7% strain, giving way at 20% strain to continuous nucleation of leading partial dislocations with {111}-habit at the embryo surface.Item Supporting data for "Physical Aging of Polylactide Based Graft Block Polymers"(2019-11-08) Haugan, Ingrid; Lee, Bongjoon; Maher, Michael; Zografos, Aristotelis; Schibur, Haley; Jones, Seamus; Hillmyer, Marc; Bates, Frank; bates001@umn.edu; Bates, Frank; University of Minnesota Bates and Hillmyer research labsThese files contain primary data along with associated output from instrumentation supporting all results reported in Haugan et al. Physical Aging of Polylactide Based Graft Block Polymers. In Haugan et al. we found: Graft block polymers (BCPs) with poly(4-methylcaprolactone)-block-poly(lactide) (P4MCL-PLA) side chains containing 80 to 100% PLA content were synthesized with the aim of producing tough and sustainable plastics. These graft BCPs experience physical aging and become brittle over time. For short aging times, ta, the samples are ductile and shear yielding is the primary deformation mechanism. A double yield phenomenon emerges at intermediate ta where the materials deform by crazing followed by shear yielding. At long ta the samples become brittle and fail after crazing. PLA content strongly governs the time to brittle failure, where a 100% PLA graft polymer embrittles in 1 day, an 86% PLA graft BCP embrittles in 35 days, and at 80% PLA the material remains ductile after 210 days. Molecular architecture is also a factor in increasing the persistence of ductility with time; a linear triblock ages three times faster than a graft BCP with the same PLA content. SAXS and TEM analysis reveal the role of the rubbery P4MCL domains in initiating crazing by cavitation. Pre-straining the graft BCPs also significantly toughens these glassy materials. Physical aging induced embrittlement is eliminated in all the pre-strained polymers, which remain ductile after aging for 60 days. The pre-strained graft BCPs also demonstrate shape memory properties. When heated above Tg the stretched polymer within seconds returns to its original shape and recovers the original mechanical properties of the unstrained material. These results demonstrate that graft BCPs can be used to make tough, durable, and sustainable plastics and highlight the importance of understanding the mechanical performance of sustainable plastics over extended periods of time following processing.