Browsing by Subject "hydrokinetic energy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Hydrokinetic turbine array performance and geomorphic effects under different siting strategies and sediment transport conditions: topography, flow velocity and array performance measurements(2019-06-27) Musa, Mirko; Hill, Craig; Guala, Michele; mguala@umn.edu; Guala, Michele; Saint Anthony Falls Laboratory, CEGE, University of MinnesotaHydrokinetic energy can be extracted efficiently from naturally occurring water flows. Although representing a continuous and ubiquitous source of kinetic energy, rivers in particular are delicate environments, sensitive to external disturbances. Asymmetric installation of in-stream hydrokinetic energy converters have proven to actively interact with sediment transport and bedforms characteristics, triggering non-local geomorphic effects that resemble river instabilities known as forced-bars. This data-set comprises a series of measurements of channel topography evolution, flow velocity around the turbines and array performance under different configurations.Item Scaled Hydrokinetic Turbine Array installed in a laboratory channel and flood-like sediment transport conditions: topography, flow velocity and array model performance(2019-06-26) Musa, Mirko; Hill, Craig; Sotiropoulos, Fotis; Guala, Michele; mguala@umn.edu; Guala, Michele; Saint Anthony Falls Laboratory, CEGE, University of MinnesotaThe data represent sediment flux, spatio-temporally resolved topographic scans, flow velocity and voltage from the hydrokinetic turbine array experiments presented in the referenced scientific article published on Nature Energy (see reference). Hydrokinetic Energy represents a viable source of renewable energy that harness the kinetic energy of natural currents. Our experiments show that this technology can be deployed efficiently in large sandy rivers (e.g. Mississippi River), without compromising the geomorphic equilibrium of the stream and the structural safety of the turbine foundation, even in the presence of large migrating dunes.