Browsing by Subject "fluid flow"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Understanding growth rate limitations in production of single-crystal cadmium zinc telluride (CZT) by the traveling heater method (THM)(2017-03) Peterson, JeffreyCadmium telluride (CdTe) and cadmium zinc telluride (CZT) are important optoelectronic materials with applications ranging from medical imaging to nuclear materials monitoring. However, CZT and CdTe have long been plagued by second-phase particles, inhomogeneity, and other defects. The traveling heater method (THM) is a promising approach for growing CZT and other compound semiconductors that has been shown to grow detector-grade crystals. In contrast to traditional directional solidification, the THM consists of a moving melt zone that simultaneously dissolves a polycrystalline feed while producing a single-crystal of material. Additionally, the melt is highly enriched in tellurium, which allows for growth at lower temperatures, limiting the presence of precipitated tellurium second-phase particles in the final crystal. Unfortunately, the THM growth of CZT is limited to millimeters per day when other growth techniques can grow an order of magnitude faster. To understand these growth limits, we employ a mathematical model of the THM system that is formulated to realistically represent the interactions of heat and species transport, fluid flow, and interfacial dissolution and growth under conditions of local thermodynamic equilibrium and steady-state growth. We examine the complicated interactions among zone geometry, continuum transport, phase change, and fluid flow driven by buoyancy. Of particular interest and importance is the formation of flow structures in the liquid zone of the THM that arise from the same physical mechanism as lee waves in atmospheric flows and demonstrate the same characteristic Brunt--V ais al a scaling. We show that flow stagnation and reversal associated with lee-wave formation are responsible for the accumulation of tellurium and supercooled liquid near the growth interface, even when the lee-wave vortex is not readily apparent in the overall flow structure. The supercooled fluid is posited to result in morphological instability at growth rates far below the limit predicted by the classical criterion by Tiller et al. for constitutional supercooling.