Browsing by Subject "fencing ecology"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Enhancing mammal conservation in multi-functional landscapes using artificial intelligence, joint species distribution modeling and ecological experimentation(2022-12) Velez Gomez, JulianaPoaching and livestock production threaten wildlife and its habitat, requiring strategies to manage human-dominated landscapes to sustain conservation objectives. To better understand the spatiotemporal distribution of wildlife and its response to disturbance factors (i.e., poaching and cattle), I deployed camera traps (CTs) and automated acoustic recording units (ARUs) on cattle ranches in the Colombian Orinoquía region. Data collection resulted in the challenge of processing “Big Data,” comprising a total of 824,883 images and 3,491,528 audio files (25,584 hours of recordings). In Chapter 1, I evaluated artificial intelligence platforms built for processing CT data and developed an open-source GitBook that illustrates the use and evaluation of model performance of each of these platforms. In Chapter 2, I used CT data to detect wildlife and trained machine learning algorithms for detecting cattle and poaching activity from the ARU data. To quantify co-occurrence patterns of poachers, cattle, and wildlife, I analyzed these data using joint species distribution models, finding that co-occurrence patterns between disturbance and wild ungulates were dependent on the data-collection method (i.e., whether CTs or ARUs were used to detect disturbance). Lastly, in Chapter 3, I conducted a cattle exclusion experiment to evaluate the effectiveness of fencing for reducing forest use and habitat degradation by cattle and improving resource availability for wildlife. Collectively, these efforts will guide management in multi-functional landscapes by identifying spatial co-occurrence patterns between wildlife and disturbance factors and by scaling up evidence-based interventions to optimize the use of remaining habitat by wildlife.Item R code and data supporting: Cattle exclusion increases encounters of wild herbivores in Neotropical forests(2024-05-30) Vélez, Juliana; McShea, William; Pukazhenthi, Budhan; Rodríguez, Juan D; Suárez, María F; Torres, José M; Barrera, César; Fieberg, John; julianavelezgomez@gmail.com; Vélez, Juliana; Fieberg LabThis repository contains R code and data supporting: Cattle exclusion increases encounters of wild herbivores in Neotropical forests. This study implements a BACI experimental sampling design to quantify the effect of cattle exclusion on encounter probability of the native community of browsers and fruit consumers, and percent ground cover in multifunctional landscapes of the Colombian Orinoquía. Wildlife-permeable fences were built along forest edges in four forest patches (i.e., blocks) containing control and fenced (treatment) sites. We installed 33 camera traps to obtain information about wildlife and cattle encounter probabilities, before and after the fences were constructed. We fit Bayesian generalized linear mixed effects models to quantify the effect of fences via the interaction between the time period (before and after the fences were built) and treatment (control or fenced sites).