Browsing by Subject "boreal forest"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Influence of logging, fire, and forest type on biodiversity and productivity in southern boreal forests(Ecological Society of America, 2001) Reich, Peter B; Bakken, Peter; Carlson, Daren; Frelich, Lee E; Friedman, Steve K; Grigal, David FThe effects of logging on ecosystem sustainability are controversial. Surprisingly, existing data are inadequate to allow a comprehensive evaluation of logging effects on biodiversity, composition, and productivity since appropriate comparisons of stands of similar ages and differing disturbance histories are rare. We addressed this issue using a study of 2000 plots in 80 southern boreal forest stands in northern Minnesota, USA, wherein we contrasted naturally regenerated aspen (Populus tremuloides), jack pine (Pinus banksiana), and black spruce (Picea mariana) stands established following logging or the dominant natural disturbance, wildfire, for stands of two age classes (25-40 and 70-100 yr old). For young stands, those established postlogging had higher vascular plant diversity than those postwildfire. Otherwise, we found no evidence of differing species diversity (including canopy tree, shrub, herbaceous, and bryophyte species), composition, productivity, or nitrogen cycling, in forest stands of comparable age and forest type that originated after logging compared to after wildfire. These variables, however, differed significantly among forest types, with aboveground net primary productivity and plant species diversity generally higher in aspen than jack pine stands, even when growing on comparable soils, and lowest in black spruce. Although there is evidence that logging has increased the proportional landscape dominance by aspen, a forest type with higher diversity, nutrient cycling, and productivity than other types, our evidence refutes the idea that disturbance by logging has diminished stand-scale productivity or plant diversity in comparison to the common natural disturbance, wildfire.Item Phenological data (2009-2013) for ten tree species grown under experimental warming in northern Minnesota, USA(2020-03-27) Montgomery, Rebecca A; Stefanski, Artur; Reich, Peter B; Rice, Karen E; rebeccam@umn.edu; Montgomery, Rebecca A; University of Minnesota Forest Ecology GroupThis dataset contains five years of data on time of budburst, growing degree days at the time of budburst, time of senescence and phenological growing season length phenology data for ten tree species native to Minnesota, USA. Data were collected in a long-term open-air warming experiment located a the Cloquet Forestry Center, Cloquet, MN, USA and the Hubachek Wilderness Research Center, Ely, MN, USA. The design was a 2 (site) X 2 (habitat) x 3 (warming treatment) factorial, with 6 replicates (2 per block) for a total of 72 7.1 m2 circular plots. Species include: Quercus rubra, Quercus macrocarpa, Pinus banksiana, Pinus strobus, Populus tremuloides, Betula papyrifera, Abies balsamea, Picea glauca, Acer rubrum, Acer saccharum. These data are released in conjunction with a publication.