Browsing by Subject "biome"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Geographic range predicts photosynthetic and growth response to warming in co-occurring tree species(Nature Publishing Group, 2015) Reich, Peter B; Sendall, Kerrie M; Rice, Karen; Rich, Roy L; Stefanski, Artur; Hobbie, Sarah E; Montgomery, Rebecca APopulations near the warm edge of species ranges may be particularly sensitive to climate change, but lack of empirical data on responses to warming represents a key gap in understanding future range dynamics. Herein we document the impacts of experimental warming on the performance of 11 boreal and temperate forest species that co-occur at the ecotone between these biomes in North America. We measured in situ net photosynthetic carbon gain and growth of >4,100 juvenile trees from local seed sources exposed to a chamberless warming experiment that used infrared heat lamps and soil heating cables to elevate temperatures by +3.4 °C above- and belowground for three growing seasons across 48 plots at two sites. In these ecologically realistic field settings, species growing nearest their warm range limit exhibited reductions in net photosynthesis and growth, whereas species near their cold range limit responded positively to warming. Differences among species in their three-year growth responses to warming parallel their photosynthetic responses to warming, suggesting that leaf-level responses may scale to whole-plant performance. These responses are consistent with the hypothesis, from observational data and models, that warming will reduce the competitive ability of currently dominant southern boreal species compared with locally rarer co-occurring species that dominate warmer neighbouring regions. © 2015 Macmillan Publishers Limited. All rights reserved.Item A new species and new records of Oxyethira (Trichoptera:Hydroptilidae) from Minnesota(University of Chicago Press, 1993) Monson, Margot P.; Holzenthal, Ralph W.Males of a new species of microcaddisfly, Oxyethira (Holarctotrichia) itascae, (Trichoptera: Hydroptilidae) from the Lake Itasca region of northern Minnesota are described and illustrated. This represents the first new species of Trichoptera described from the State in nearly twenty years. Fifteen other Oxyethira species are known from the State, including 0. (Dampfitrichia) verna Ross and 0. (Oxyethira) ecornuta Morton, new records for Minnesota and the United States, respectively.Item Temperature response of soil respiration largely unaltered with experimental warming(2016) Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, AlbertThe respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.