Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "baxter permutations"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Involutions on Baxter Objects and q-Gamma Nonnegativity
    (2015-08) Dilks, Kevin
    Baxter numbers are known to count several families of combinatorial objects, all of which come equipped with a natural involution. In this paper, we add a combinatorial family to the list, and show that the known bijections between these objects respect these involutions. We also give a formula for the number of objects fixed under this involution, showing that it is an instance of Stembridge's ``$q=-1$ phenomenon''. A polynomial $\sum_{i=0}^{n} a_i t^i$ with symmetric coefficients ($a_{n-i}=a_i$) has a unique expansion $\sum_{k=0}^{\lfloor n/2 \rfloor} \gamma_k t^k(1+t)^{n-2k}$, and is said to be \emph{gamma-nonnegative} if $\gamma_k\geq 0$ for all $k$. We either prove or conjecture a stronger $q$-analogue of this property for several polynomials in two variables $t$,$q$, whose $q=1$ specializations are known to be gamma-nonnegative.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues