Browsing by Subject "barite precipitation reaction"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Mobile Water Treatment Demonstration System for Sulfate Reduction(University of Minnesota Duluth, 2022-08) Cai, Meijun; Rao, Shashi; Post, Sara P; Hanson, Adrian; Chun, Chan Lan; Johnson, Lucinda B; Hudak, George J; Weberg, RolfThe State of Minnesota adopted a sulfate standard of 10 mg/L for wild rice waters in 1973. Although under review, current technology for achieving this standard is a challenge for small industries and municipalities. Membrane-based technologies such as nanofiltration and reverse osmosis are capable of treating water to reach the Minnesota wild rice water sulfate standard; however, they typically require high capital and operation costs. Therefore, there is a need to develop cost-effective sulfate treatment alternatives. The Natural Resources Research Institute (NRRI) has developed a treatment system based on barite chemical precipitation reactions to reduce sulfate levels in water from 60-200 mg/L to below 10 mg/L. This system was demonstrated at bench-scale batch and continuous tests. The data collected from these lab tests were used to scale up the process to a trailer-based modular demonstration treatment system. This study highlights the outcomes of field pilot tests conducted by NRRI using this treatment system. The objectives of the field pilot trials were to: (1) Evaluate the efficacy of the chemical precipitation process when scaled up from 200 ml/min to 2 GPM; (2) Study the effect of co-existing chelating organics of the raw wastewater on barite precipitation reactions; (3) Optimize the chemical reagent dosage levels; (4) Investigate the potential of reusing process sludge to promote precipitation reactions; (5) Identify strategies to minimize scale formation on process equipment; and (6) Estimate the chemical reagent costs. The pilot tests were conducted using effluent from two municipal wastewater treatment plants (WWTP)—the Virginia WWTP and the Grand Rapids WWTP in northeastern Minnesota—from June 2021 until October 2021.