Browsing by Subject "alkynes"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Bimetallic Active Sites In Metal-Organic Frameworks: Harnessing Bimetallic Cooperativity For Chemoselective Transformations(2020-04) Desai, Sai PuneetHeterogeneous catalysts featuring multiple metal centers account for a significant fraction of US GDP, and new ways to enhance them would have enormous economic, scientific and technological impact. The availability of several modulating sites coupled with the ability to precisely tune the selectivity has enabled the usage of multi-metallic catalysts for a wide array of industrial transformations. Critical to the challenge in engineering such active sites, is to understand and predict how catalysts function at the atomic or molecular level. An emerging approach that facilitates the systematic study of such systems is the installation of molecular precursors onto three-dimensional crystalline supports such as metal-organic frameworks (MOFs). In this vein, a generalized solution-phase-deposition technique was developed wherein pre-assembled bimetallic precursors were deposited onto the MOF NU-1000, such that two metals of choice were delivered in a controlled manner. Rigorous spectroscopic and computational investigations confirmed that the bimetallic active sites were structurally well-defined and site isolated. An important outcome of this study was the identification of a rhodium-gallium (Rh–Ga) bimetallic catalyst for the chemoselective semihydrogenation of alkynes to alkenes. In the absence of the supporting Ga ion, over-hydrogenation to the alkane was observed by the Rh-only analogue. By quantitatively analyzing the initial rates, transition state properties, and thermodynamic profiles, it was concluded that Ga acts as an electronic and structural promoter. Finally, as an extension of this unique strategy, thermally robust Co–M (M = Al, Mn or Co) active sites, prepared by silica nanocasting of NU-1000, mediated industrially relevant chemical transformations such as oxidative dehydrogenation of propane to propylene and oxidation of alcohols. Overall, the design principles developed in this thesis provide compelling solutions to generate ‘multi-metallic single sites’ and add to the arsenal of existing metalation strategies.Item Development of Ti-mediated multicomponent syntheses via cycloaddition and insertion reactions(2023-05) Frye, ConnorNitrogen-containing compounds are extremely prevalent in bioactive molecules, dyes, electronics, and other materials. Thus, the development of practical synthetic routes to a diverse library of N-containing compounds is vital. Condensation reactions have been traditionally employed to access highly functionalized N-containing compounds. However, these reactions typically exhibit poor chemoselectivity, and frequently require extensive pre-construction of carbon skeletons. These limitations make the development of metal-mediated or -catalyzed multicomponent reactions from simple starting materials an attractive alternative. Given its high abundance and low-cost, Ti is an excellent candidate for facilitating these reactions. Herein, efforts to develop new Ti-mediated or -catalyzed multicomponent transformations for the synthesis of N-containing organic compounds and N-heterocycles are presented. The modular construction of unsymmetrical α-diimines has been achieved through the diimination of alkynes using Ti imidos, nitrosos, and nitriles. This reaction features a key diazatitanacyclohexadiene intermediate, generated ¬in-situ, that undergoes a series of cycloaddition and retrocyclization reactions. The reactivity of this titanacycle towards other unsaturated substrates and electrophiles has been explored, culminating in the development of a multicomponent method for the synthesis of 1,2-dihydropyrimidines. Finally, a newly developed Ti-catalyzed multicomponent synthesis of 2,3-annulated pyrroles from alkynes, 1,2-cyclononadiene, and azobenzene is presented, and the selectivity of other allenes has been assessed. Importantly, all of these Ti-mediated reactions feature key electrocyclic mechanistic steps, and it is becoming increasingly clear that these are a general feature of titanium’s reactivity that can be exploited for the design of new synthetic methods.