Browsing by Subject "WIMP"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item A Computational Evaluation Of Neutron Capture Efficiency In Plastic Scintillators(2016-10-05) Schmitz, Ryan; Poehlmann, David-Michael; Rogers, Hannah; Barker, D'Ann; Cushman, PriscillaA Monte Carlo study using GEANT4 was performed on the neutron capture efficiency rates achieved by Gd-loaded plastic scintillators. A "deposition efficiency" parameter was defined as the percentage of incident neutrons which were captured in the Gd-loaded scintillator, and whose emitted gammas deposited energy above a certain threshold in a larger layer of plastic scintillator. Deposition efficiency curves were collected for varying thresholds and Gd concentrations, and the results are discussed here.Item A dark matter search using the final CDMS-II data and 100 mm SuperCDMS germanium detector ionization test(2014-07) Zhang, JianjieAstrophysical observations indicate that approximately 85% of the matter in the universe is nonluminous, nonbaryonic, and nonrelativistic (cold) dark matter. Weakly Interacting Massive Particles (WIMPs) are a particularly well motivated dark matter particle candidate. They would be thermally produced in the early universe and their relics account for the current dark matter abundance. WIMP candidate particles are naturally provided by extensions to the Standard Model of particle physics, such as supersymmetry. The Cryogenic Dark Matter Search (CDMS) experiment operates cryogenic germanium and silicon particle detectors in the low-background environment of the Soudan Underground Laboratory in northern Minnesota to search for WIMP-nucleus scatters while rejecting electron-recoil background. The detectors simultaneously measure the ionization and phonon energies of each scattering event. The difference in ionization yield (ratio of ionization energy to recoil energy) discriminates nuclear recoils from the electron-recoil background efficiently.More sensitive detectors are required to probe the WIMP parameter space with lower WIMP-nucleon scattering cross sections. To support the R&D effort especially the detector R&D and characterization of the SuperCDMS experiment, a new CDMS test facility has been developed on the University of Minnesota campus. This thesis documents the test facility and the work involved in its development. In the test facility, we performed the first ionization collection efficiency measurements of the ionization test devices. The test devices are fabricated with detector-grade germanium crystals that are 100 mm in diameter, which is the largest available, and 33 mm in thickness. The measured efficiencies are consistent with the earlier measurements conducted with smaller Ge crystals, demonstrating that these 100 mm crystals can be used for development of the next generation dark matter detectors.Improvements of data analysis methods can also potentially improve the sensitivity of an experiment. The data taken during the last four runs of CDMS II with total raw exposure 612 kg-day were reprocessed with improved ionization pulse reconstruction algorithm. We present the classic timing analysis with the reprocessed data in this thesis. For the four runs combined, this analysis resulted in a new WIMP-nucleon cross section 4.4×10-44cm2 for a WIMP mass of 70 GeV, which is a factor of 1.6 improvement compared to the original c58 classic timing analysis.Item Development of CDMS-II surface event rejection techniques and their extensions to lower energy thresholds(2014-12) Hofer, Thomas JamesThe CDMS-II phase of the Cryogenic Dark Matter Search, a dark matter direct-detection experiment, was operated at the Soudan Underground Laboratory from 2003 to 2008. The full payload consisted of 30 ZIP detectors, totaling approximately 1.1 kg of Si and 4.8 kg of Ge, operated at temperatures of 50 mK. The ZIP detectors read out both ionization and phonon pulses from scatters within the crystals; channel segmentation and analysis of pulse timing parameters allowed effective fiducialization of the crystal volumes and background rejection sufficient to set world-leading limits at the times of their publications. A full re-analysis of the CDMS-II data was motivated by an improvement in the event reconstruction algorithms which improved the resolution of ionization energy and timing information. The Ge data were re-analyzed using three distinct background-rejection techniques; the Si data from runs 125 - 128 were analyzed for the first time using the most successful of the techniques from the Ge re-analysis. The results of these analyses prompted a novel "mid-threshold" analysis, wherein energy thresholds were lowered but background rejection using phonon timing information was still maintained. This technique proved to have significant discrimination power, maintaining adequate signal acceptance and minimizing background leakage. The primary background for CDMS-II analyses comes from surface events, whose poor ionization collection make them difficult to distinguish from true nuclear recoil events. The novel detector technology of SuperCDMS, the successor to CDMS-II, uses interleaved electrodes to achieve full ionization collection for events occurring at the top and bottom detector surfaces. This, along with dual-sided ionization and phonon instrumentation, allows for excellent fiducialization and relegates the surface-event rejection techniques of CDMS-II to a secondary level of background discrimination. Current and future SuperCDMS results hold great promise for mid- to low-mass WIMP-search results.Item SuperCDMS Prototype Detector Design and Testing(2017-10) Kennedy, AllisonA substantial amount of astrophysical evidence indicates that approximately a quarter of all energy in the universe is composed of a nonluminous, and nonbaryonic "dark'' matter. Of the potential dark matter particle candidates, Weakly Interacting Massive Particles, or WIMPs, is particularly well motivated. As a means to directly detect WIMP interactions with baryonic matter, the Cryogenic Dark Matter Search (CDMS) project was established, operating at the Soudan Underground Laboratory from 2003 - 2015, under the CDMS II and SuperCDMS Soudan experiments. CDMS detectors simultaneously measure the ionization and phonon energies of recoil events in Si and Ge crystals kept at cryogenic temperatures in a low-background environment. The ratio of ionization energy to recoil energy serves as a discrimination parameter to separate nuclear recoil events from the electron-recoil background. The next installation, SuperCDMS SNOLAB, is preparing for future operation, with an initial payload of eighteen Ge and six Si, 100 mm diameter, 33 mm thick detectors. Of this initial payload, eight Ge and four Si detectors will operate in a high-voltage (~100 V) mode, which have an increased sensitivity to low-mass WIMPs due to decreased energy thresholds. The SuperCDMS test facility at University of Minnesota aids in the detector R&D and characterization of prototype detectors, as part of the scale-up effort for SuperCDMS SNOLAB. This thesis presents the first full ionization and phonon characterization study of a 100 mm diameter, 33 mm thick prototype Ge detector with interleaved phonon and ionization channels. Measurements include ionization collection efficiency, surface event rejection capabilities, and successful demonstration of nuclear recoil event discrimination. Results indicate that 100 mm diameter, interleaved Ge detectors show potential for use in SuperCDMS SNOLAB. As part of detector R&D, the Minnesota test facility also looks beyond the next stage of SuperCDMS, investigating larger individual detectors as a means to easily scale up the sensitive mass of future searches. This thesis presents the design and initial testing results of a prototype 150 mm diameter, 33 mm thick silicon ionization detector, which is 5.2 times larger than those used in SuperCDMS at Soudan and 2.25 times larger than those planned for use at SuperCDMS SNOLAB. In addition, the detector was operated with contact-free ionization electrodes to minimize bias leakage currents, which can limit operation at high bias voltages. The results show promise for the operation of both large volume silicon detectors and contact-free ionization electrodes for scaling up detector mass and bias.