Browsing by Subject "Utility Representation"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Computability of Preference, Utility, and Demand(Center for Economic Research, Department of Economics, University of Minnesota, 1996-12) Richter, Marcel K.; Wong, Kam-ChauThis paper studies consumer theory from the bounded rationality approach proposed in Richter and Wong (1996a), with a "uniformity principle" constraining the magnitudes (prices, quantities, etc.) and the operations (to perceive, evaluate, choose, communicate, etc.) that agents can use. In particular, we operate in a computability framework, where commodity quantities, prices, consumer preferences, utility functions, and demand functions are computable by finite algorithms (Richter and Wong (1996a)). We obtain a computable utility representation theorem. We prove an existence theorem for computable maximizers of quasiconcave computable utility functions (preferences), and prove the computability of the demand functions generated by such functions (preferences). We also provide a revealed preference characterization of computable rationality for the finite case. Beyond consumer theory, the results have applications in general equilibrium theory (Richter and Wong (1996a)).