Browsing by Subject "Urban tree canopy"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item 2015 Twin Cities Metropolitan Area Urban Tree Canopy Assessment(2017-01-03) Knight, Joe F; Rampi, Lian P; Host, Trevor K; jknight@umn.edu; Knight, Joseph, FA high-resolution (1-meter) tree canopy assessment was completed for the Twin Cities Metropolitan Area. Mapping of existing and potential tree canopy is critical for urban tree management at the landscape level. This classification was created from combined 2015 aerial imagery, LIDAR data, and ancillary thematic layers. These data sets were integrated using an Object-Based Image Analysis (OBIA) approach through multi-resolution image segmentation and an iterative set of classification commands in the form of customized rulesets. eCognition® Developer was used to develop the rulesets and produce raster classification products for TCMA. The results were evaluated using randomly placed and independent verified assessment points. The classification product was analyzed at regional scales to compare distributions of tree canopy spatially and at different resolutions. The combination of spectral data and LiDAR through an OBIA method helped to improve the overall accuracy results providing more aesthetically pleasing maps of tree canopy with highly accurate results.Item Influence of Urban Tree Canopy on Single-Family Residential Structure Energy Consumption at the Community Scale in Hutchinson, Minnesota(2013-07) Potyondy, Philip JohnCommunity forests are vulnerable to invasive pests and a changing climate. Urban forests provide a host of environmental, social, and economic benefits to communities. Cold, long, and windy winters dominate the energy budget of upper Midwest communities. Hot and humid summers are becoming increasingly constant. Quantifying the relationship between energy use and trees has been simulated and estimated in a variety of ways. Few studies have successfully measured this interaction across the landscape, especially in heating dominated climates. Digitized urban tree canopy data at multiple scales has been correlated with weather adjusted normalized energy consumption data while controlling for a variety of housing characteristics. A significant relationship between increased tree canopy and reduced winter heating energy consumption is found at 500-1100 feet (p<0.01), and also from 400-1500 feet (p<0.05) from parcels. Summer cooling energy reduction from increased tree canopy at the parcel (p<0.05) and distances beyond 900 feet (p<0.10) was also found significant. Saving energy with urban forest canopy is a community scale opportunity and obligation.