Browsing by Subject "Traffic forecasting"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Forecasting inaccuracies: a result of unexpected events, optimism bias, technical problems, or strategic misrepresentation?(Journal of Transport and Land Use, 2015) Naess, Petter; Andersen, Jeppe Astrup; Nicolaisen, Morten Skou; Strand, ArvidBased on the results from a questionnaire survey and qualitative interviews among different actors involved in traffic forecasting, this paper discusses what evidence can be found in support of competing explanations of forecasting errors. There are indications that technical problems and manipulation, and to a lesser extent optimism bias, may be part of the explanation of observed systematic biases in forecasting. In addition, unexpected events can render the forecasts erroneous, and many respondents and interviewees consider it to be simply not possible to make precise predictions about the future. The results give rise to some critical reflections about the reliability of project evaluations based on traffic forecasts susceptible to several systematic as well as random sources of error.Item Real-Time Prediction of Freeway Occupancy for Congestion Control(Center for Transportation Studies, University of Minnesota, 1997-09) Cherkassky, Vladimir; Yi, SangkugAccurate traffic prediction is critical for effective control of on-ramp traffic (ramp metering). During congestion, traffic shock waves propagate back and forth between the detectors, and traffic becomes inherently non-stationary and difficult to predict. Recently, several adaptive non-linear time series prediction methods have been developed in statistics and in artificial neural networks. We applied these methods to develop real-time prediction of freeway occupancy during congestion periods, from current and time-lagged observations of occupancy at several (neighboring) detector stations. This study used the following function estimation methodologies for real-time occupancy prediction: two statistical techniques, multivariate adaptive regression splines (MARS) and projection pursuit regression; two neural network methods, multi-layer perceptrons (MLP) and constrained topological mapping (CTM). All these methods were applied to freeway occupancy data collected on I-35W during morning rush hours. Data collected on one day was used for training (model estimation), whereas the data collected on a different day was used for testing, i.e., estimating the quality of prediction (generalization). Results for this study indicate that the proposed methodology provides 10-15% more accurate prediction of traffic during congestion periods than the approach currently used by Minnesota DOT.Item Real-Time Traffic Prediction for Advanced Traffic Management Systems: Phase I(Intelligent Transportation Systems Institute, University of Minnesota, 1995-10) Davis, Gary A.; Stephanedes, Yorgos J.; Kang, Jeong-GyuIt has been recommended that Advanced Traffic Management Systems (ATMS) must work in real-time, must respond to and predict changes in traffic conditions, and must included areawide detection surveillance. To support such ATMS, this project developed a tractable, stochastic model of freeway traffic flow and travel demand which satisfies three primary objectives. First, the model should generate real-time estimates of traffic state variables from loop detector data, which can in turn be used as time-varying initial conditions for more comprehensive simulation models, such as KRONOS or FREESIM. Second, the model should generate its own predictions of mainline and off-ramp traffic volumes, as well as calculate the expected error associated with these predictions, thus supporting the use of both deterministic and stochastic optimization for determining traffic management actions. Third, the model should be capable of full on-line implementation, in that it should be capable of estimating required parameters from traffic detector data. The basic model was developed by combining ideas from the theory of Markov population processes with a new for the relationship between traffic flow and density, producing a stochastic version of a simple-continuum model. Kalman filtering was then applied to the basic model to develop algorithms for (1) estimating from loop detector counts the traffic density in freeway sections broken down by destination off-ramp, (2) predicting main-line and off-ramp traffic volumes from given on-ramp volumes and, (3) computing adaptive estimates of the freeway's origin destination matrix from loop detector counts. Monte Carlo simulation tests were used to evaluate three different methods for off-line estimation of model parameters, as well as to assess the accuracy of the density estimates and volume predictions. The results indicated that the estimation and prediction model tends to be robust with respect to the parameter estimation scheme, and that the model generates a reasonable characterization of estimation and prediction uncertainty. Limited tests with field data tended to confirm the simulation results, and to emphasize the importance of real-time estimation of freeway origin-destination matrices in generating accurate predictions.