Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Taking Stock - Stormwater"

Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Duluth Residential Stormwater Reduction Demonstration Project for Lake Superior Tributaries
    (2011-07-30) Kleist, Chris; Brady, Valerie; Johnson, Lucinda B; Schomberg, Jesse
    We used paired 2‐block street sections in the Amity Creek watershed (Duluth, MN) to demonstrate the effectiveness of homeowner BMPs to reduce residential stormwater flow to storm sewers in an older neighborhood in a cold climate on clay and bedrock geology. Runoff from each street was measured before and after installation of stormwater BMPs. In addition, the knowledge, attitudes, and practices of residents were measured before and after BMP installation. BMPs were installed on properties of willing residents of one street (“treatment”). Most residents (22 of 25 properties) willingly participated. 250 trees and shrubs were planted; 22 rain barrels were installed; 5 rain gardens, 12 rock‐sump storage basins, and 2 swales were constructed; and a stormwater ditch was re‐dug and had 5 ditch checks installed in it. The post‐project survey indicated an increase in understanding by treatment‐street residents of where stormwater flowed to and what it affected, and an increase in willingness to accept at least some responsibility for stormwater runoff. Residents who received BMPs were generally satisfied with them and would recommend them to others. Runoff reduction proved more difficult to quantify due to high and inconsistent runoff variability between the paired streets, very few pre‐BMP installation rain events, and loss of one control street due to re‐paving mid‐project. Capacity of installed BMPs is approximately 2.5% of the measured stormwater runoff. There is about a 20% greater reduction in runoff for the treatment street after BMPs were installed than for the control street for small to moderate storm events; while we would like to attribute this completely to our BMPs, we cannot prove that other factors weren’t also at work. Peak flows also appear to have been reduced for 1 inch and smaller rainstorms, but we were unable to accurately measure this reduction. The results are available on an existing stream education website and are used to educate neighborhood, city of Duluth, and regional residents on stormwater issues, individual responsibility, and BMP options.
  • Loading...
    Thumbnail Image
    Item
    An Integrated Approach to Assessing Multiple Stressors for Coastal Lake Superior
    (2011) Niemi, Gerald J; Reavie, Euan; Peterson, Gregory S; Kelly, John R; Johnston, Carol A; Johnson, Lucinda B; Howe, Robert W; Host, George; Hollenhorst, Thomas; Danz, Nick; Ciborowski, Jan H; Brown, Terry; Brady, Valerie; Axler, Richard P
    This peer-reviewed article summarizes research conducted under the Great Lakes Environmental Indicators (GLEI) project initiated by the authors in 2001. The authors assessed the status of Lake Superior’s coastal ecosystem relative to over 200 environmental variables collected from GIS data sets for the enture US Great Lakes basin. These were assessed using gradients including atmosphereic deposition, agriculture, human population and development, land cover, point source pollution, soils and a cumulative stress index. Relationships of biological assemblages of birds, diatoms, fish and invertebrates, wetland plants, soils and stable isotopes to these gradients were then assessed. Key findings are extracted and reproduced below. Biological indicators can be used both to estimate ecological condition and to suggest plausible causes of ecosystem degradation across the U.S. Great Lakes coastal region. Here we use data on breeding bird, diatom, fish, invertebrate, and wetland plant communities to develop robust indicators of ecological condition of the U.S. Lake Superior coastal zone. Sites were selected as part of a larger, stratified random design for the entire U.S. Great Lakes coastal region, covering gradients of anthropogenic stress defined by over 200 stressor variables (e.g. agriculture, altered land cover, human populations, and point source pollution). A total of 89 locations in Lake Superior were sampled between 2001 and 2004 including 31 sites for stable isotope analysis of benthic macroinvertebrates, 62 sites for birds, 35 for diatoms, 32 for fish and macroinvertebrates, and 26 for wetland vegetation. A relationship between watershed disturbance metrics and 15N levels in coastal macroinvertebrates confirmed that watershed-based stressor gradients are expressed across Lake Superior’s coastal ecosystems, increasing confidence in ascribing causes of biological responses to some landscape activities. Several landscape metrics in particular—agriculture, urbanization, human population density, and road density—strongly influenced the responses of indicator species assemblages. Conditions were generally good in Lake Superior, but in some areas watershed stressors produced degraded conditions that were similar to those in the southern and eastern U.S. Great Lakes. The following indicators were developed based on biotic responses to stress in Lake Superior in the context of all the Great Lakes: (1) an index of ecological condition for breeding bird communities, (2) diatom-based nutrient and solids indicators, (3) fish and macroinvertebrate indicators for coastal wetlands, and (4) a non-metric multidimensional scaling for wetland plants corresponding to a cumulative stress index. These biotic measures serve as useful indicators of the ecological condition of the Lake Superior coast; collectively, they provide a baseline assessment of selected biological conditions for the U.S. Lake Superior coastal region and prescribe a means to detect change over time.” Key points: “In general, the U.S. Great Lakes coastal region of Lake Superior shows greater overall stress in the southern regions compared with relatively low overall stress in the northern regions. These patterns are primarily due to agricultural land use, higher human population densities, and point sources in the eastern and western portions on the south shore, while the north shore at the western end of Lake Superior is primarily forested with relatively sparse human population densities. Coastal regions of Lake Superior can be found at each of the extremes of the disturbance gradients. This includes relatively pristine watersheds in the northern regions with low human population densities and little agriculture that contrast with regions of relatively high populations with industrial activity such as Duluth-Superior in Minnesota-Wisconsin and Sault Ste. Marie Michigan at the other end of the gradient. The U.S. Lake Superior coastal region varies widely in the degree of human-related stress; generally, levels of stress decrease from south to north but with considerable variation, especially along the southern shore due to local agricultural activity and the presence of several population and industrial centers. In spite of a lack of latitudinal variation, there is human-induced, watershed scale variability across the Lake Superior coast. Compared to the other Great Lakes, Lake Superior coastal fish communities had more generally intolerant fish and more turbidity intolerant fish. Coastal fish community composition reflected the higher levels of suspended solids associated with human alteration to watersheds. The most disturbed sites on Lake Superior had greater proportions of non-native species and fewer bottom-feeding taxa.
  • Loading...
    Thumbnail Image
    Item
    The Lakeside Stormwater Reduction Project (LSRP): Evaluating the Impacts of a Paired Watershed Experiment on Local Residents
    (2011) Eckman, Karlyn; Brady, Valerie; Schomberg, Jesse
    Scientists, city utilities staff, and local environmental engineers teamed up with homeowners to determine the best ways to reduce stormwater runoff from the Lakeside residential neighborhood in Duluth. The Lakeside Stormwater Reduction Project (LSRP) used a paired-watershed approach to assess the results of diverse stormwater treatments in the Lakeside neighborhood of Duluth on stormwater runoff into Amity Creek. The project investigated various installations that reduce runoff and can be easily maintained by homeowners. The goal was to identify effective methods to reduce runoff contributing to problems in Amity Creek and the Lester River. To complement extensive biophysical monitoring, a knowledge, attitudes and practices (KAP) study was done in April 2008. The purpose was to obtain baseline human dimensions data; assess residents’ willingness to participate in the project; and to identify possible barriers to adoption. Baseline information and residents’ views about stormwater issues were obtained in April 2008. The first-round KAP data was used to refine project design, and to identify possible barriers to participation. The study was repeated with the same sample in September 2010 to evaluate outcomes and impacts. Comparison of the pre and post KAP data shows a significant increase in respondent knowledge about stormwater, a positive shift in attitudes, and strong evidence of adoption of stormwater practices as a result of project efforts. The project successfully increased awareness among residents about the impacts of stormwater on Amity Creek and the Lester River, and fostered adoption of stormwater management practices by homeowners, even in the control sample.
  • Loading...
    Thumbnail Image
    Item
    Urban Flooding in the Great Lakes States: A Municipality/Utility Survey Report
    (2012-07) Center for Neighborhood Technology
    As part of our Smart Water for Smart Regions initiative, the Center for Neighborhood Technology (CNT) is working with communities across Great Lakes states to alleviate urban flooding. The purpose of this survey is to develop an understanding of the effect of flooding on Great Lakes cities and to identify strategies to manage the problem. By providing a baseline of practices and policies among municipal stormwater/sewer utilities, the survey results are intended to support collaborative initiatives for dealing with flooding. Our survey, the first of its kind in the Great Lakes, found that municipalities and stormwater utilities face significant challenges. The 30 survey respondents serve 330 municipalities with a population of approximately 19.7 million people—nearly 23 percent of the total population of the Great Lakes states and province.4 All 30 respondents received flooding complaints, with 80 percent characterizing the annual number of complaints as medium or large. Stormwater is flooding into people’s backyards, streets, and parking lots (90 percent of respondents said), into the interior of buildings through sewer backups (83.3 percent), and through the walls of homes and buildings (46.7 percent).

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues