Browsing by Subject "Superfluidity"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Dynamics of mobile impurities in one-dimensional quantum liquids(2014-08) Schecter, MichaelWe study the dynamics of mobile impurities in a one-dimensional quantum liquid. Due to singular scattering with low-energy excitations of the host liquid, the impurity spectral properties become strongly renormalized even at weak coupling. This leads to universal phenomena with no higher-dimensional counterparts, such as lattice-free Bloch oscillations, power-law threshold behavior in the impurity spectral function and a quantum phase transition as the impurity mass exceeds a critical value. The additional possibility of integrability in one-dimension leads to the absence of thermal viscosity at special points in parameter space. The vanishing of the phonon-mediated Casimir interaction between separate impurities can be understood on the same footing. We explore these remarkable phenomena by developing an effective low-energy theory that identifies the proper collective coordinates of the dressed impurity, and their coupling to the low-energy excitations of the host liquid. The main appeal of our approach lies in its ability to describe a dynamic response using effective parameters which obey exact thermodynamic relations. The latter may be extracted using powerful numerical or analytical techniques available in one-dimension, yielding asymptotically exact results for the low-energy impurity dynamics.Item Elastic transmission of identical particles through a strongly correlated Bose-Einstein condensate(2008-12) Lutsyshyn, YaroslavAtomic transmission experiments on superfluid helium-four may provide information about its structure. It was proposed in the past that a transmission channel is possible in which the impinging atoms couple directly to the condensate fraction in helium-II. Such a mechanism would provide an important direct probe of the off-diagonal long-range order in helium-II. We have successfully developed a method based on the diffusion Monte Carlo technique to simulate elastic transmission of atoms through a slab of helium-four at zero temperature. The scattering process is presented as a sum of appropriate standing wave scattering states. The phase factors for each scattering state are determined by matching the diffusion Monte Carlo results with correct energy of the scattering state. The scattering states effectively set the boundary conditions for the problem and in this way determine a phase factor and momentum of the incoming particle. Diffusion Monte Carlo is then performed in its fixed-node flavor. Our results suggest a possibility of complete transparency of small unbound helium films for a broad range of incoming particle's energy. Wavepacket analysis of the computed transmission coefficient's phase dependence on the incoming particle's wavevector was used to obtain times of the transmission process. Time delay analysis suggests the presence of anomalously fast transmission. Such results are strongly supportive of the original condensate mediated transmission hypothesis.