Browsing by Subject "SuperCDMS"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Low-Mass Dark Matter Search Results and Radiogenic Backgrounds for the Cryogenic Dark Matter Search(2016-12) Pepin, MarkAn ever-increasing amount of evidence suggests that approximately one quarter of the energy in the universe is composed of some non-luminous, and hitherto unknown, “dark matter”. Physicists from numerous sub-fields have been working on and trying to solve the dark matter problem for decades. The common solution is the existence of some new type of elementary particle with particular focus on weakly interacting massive particles (WIMPs). One avenue of dark matter research is to create an extremely sensitive particle detector with the goal of directly observing the interaction of WIMPs with standard matter. The Cryogenic Dark Matter Search (CDMS) project operated at the Soudan Underground Laboratory from 2003–2015, under the CDMS II and SuperCDMS Soudan experiments, with this goal of directly detecting dark matter. The next installation, SuperCDMS SNOLAB, is planned for near-future operation. The reason the dark-matter particle has not yet been observed in traditional particle physics experiments is that it must have very small cross sections, thus making such interactions extremely rare. In order to identify these rare events in the presence of a background of known particles and interactions, direct detection experiments employ various types and amounts of shielding to prevent known backgrounds from reaching the instrumented detector(s). CDMS utilized various γ and neutron shielding to such an effect that the shielding, and other experimental components, themselves were sources of background. These radiogenic backgrounds must be understood to have confidence in any WIMP-search result. For this dissertation, radiogenic background studies and estimates were performed for various analyses covering CDMS II, SuperCDMS Soudan, and SuperCDMS SNOLAB. Lower-mass dark matter has become more prominent in the past few years. The CDMS detectors can be operated in an alternative, higher-biased, mode to decrease their energy thresholds and correspondingly increase their sensitivity to low-mass WIMPs. This is the CDMS low ionization threshold experiment (CDMSlite), which has pushed the frontier at lower WIMP masses. This dissertation describes the second run of CDMSlite at Soudan: its hardware, operations, analysis, and results. The results include new WIMP mass-cross section upper limits on the spin-independent and spin-dependent WIMP-nucleon interactions. Thanks to the lower background and threshold in this run compared to the first CDMSlite run, these limits are the most sensitive in the world below WIMP masses of ∼4 GeV/c^2. This demonstrates also the great promise and utility of the high-voltage operating mode in the SuperCDMS SNOLAB experiment.Item Metal-Doped Plastic Scintillator for Neutron Detection(2018) Poehlmann, David-Michael TThe Super Cryogenic Dark Matter Search (SuperCDMS) is an experiment that looks for dark matter, specifically weakly-interacting massive particles (WIMPs) via nuclear recoils with germanium and silicon atoms. Currently, the SuperCDMS SNOLAB dark matter detector, the successor to SuperCDMS Soudan, is being developed for placement at the SNOLAB research facility in Canada. As the sensitivity of this detector is increased, the suppression of neutron backgrounds through the traditional methods of using highly radiopure materials and passive shielding becomes much more difficult. Single-scatter neutron events can produce nuclear recoils that are indistinguishable from WIMP interactions. These events can be detected by replacing some of the passive neutron shielding with an active neutron veto composed of a metal-loaded plastic scintillator.Item SuperCDMS Background Models for Low-Mass Dark Matter Searches(2018-08) Barker, D'AnnAn abundance of astrophysical and cosmological evidence indicates the existence of a non-luminous, non-baryonic form of matter, called dark matter, that is approximately a quarter of all energy in the universe. One promising candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which interacts with baryonic matter at most on the scale of the weak force. The Cryogenic Dark Matter Search (CDMS) experiment aims to detect the nuclear recoils induced by the elastic scattering of WIMPs off of germanium nuclei. This is a rare signal and difficult to detect, especially the low-energy recoils that are produced by low-mass dark matter. The CDMS project operated at the Soudan Underground Laboratory from 2003--2015, with an upgrade to the SuperCDMS experiment in 2012. The germanium detectors were operated at 50~mK and able to measure both the ionization and athermal phonons produced in a particle interaction. Measuring two signals enables discrimination between electron recoil and nuclear recoil events. An alternative operating mode for the detectors is called the CDMS low ionization threshold experiment (CDMSlite), where a higher bias was applied to the detectors and only the phonon signal analyzed. This method increased sensitivity to low-mass dark matter interactions, but sacrificed discrimination capability. The CDMSlite spectrum had a large contribution from electron recoil background events. From the information gained during the first two CDMSlite Runs, a background model was developed for the third and final CDMSlite Run. Analytical descriptions were identified for those backgrounds that were theoretically known, e.g. tritium $\beta$-spectrum, and Geant simulations were used to understand and predict the low-energy spectra from other sources, e.g. Compton scattering. Multiple new models were developed for detectors operated in CDMSlite at Soudan. These include the analytical formula for Compton scattering, and empirical models for surface backgrounds from $^{210}$Pb contamination of the germanium crystals and detector housing. In order to accurately describe the surface events, a new detector response function was developed that included information about the electric field and energy resolution of the detector. These models were essential to the implementation of a profile likelihood analysis of the CDMSlite Run 3 data, which improved on the sensitivity to dark matter over the Run 2 optimum interval analysis for WIMP masses above 2.5~GeV/$c^2$. This demonstrated a successful application of a likelihood analysis to the high-voltage operating mode, and the potential for these analyses in the future SuperCDMS SNOLAB experiment. For the SuperCDMS SNOLAB experiment, the change in background rates from radiogenic neutrons was considered as additional towers of detectors were added, and the feasibility of an active neutron veto as a potential upgrade for large payloads was studied. This veto could be constructed of plastic scintillator with layers of gadolinium resin, and would aid in reducing the nuclear recoil single scatter background that is indistinguishable from the WIMP signal.