Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Subgroups"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Subgroups of Groups of Units mod n
    (2019-06) Roshan Zamir, Shahriyar
    The set of all positive integers less than n and relatively prime to n with multiplication mod n is a group denoted U(n). These groups are useful in algebra, number theory and computer science. We are interested in studying the structure of certain subgroups of U(n). As part of their 1980’s paper titled Factoring Groups of Integers Modulo n Gallian and Rusin determined the structure of U(n) and U_s (n) for n=st where gcd(s,t)=1 and U_s (n)={x∈U(n)┤|x (mod s)=1}. We extend this definition to U_k (n) where k is any positive integer and not necessarily a divisor of n. Moreover for a subgroup H of U(n) and an integer k we define: U_(k,H) (n)={x∈U(n)┤|x (mod k)∈H}. We find the structure of these subgroups and the factor group U(n)/U_k (n) in terms of an external direct product of cyclic groups. Our methods also determine group elements of U(n) that form a subgroup with a desired structure. We then shift our attention to the class of subgroups defined as: U(n)^((k))={x^k ┤| x∈U(n)}. We fully classify subgroups of this form and their factor groups. They are useful in finding Sylow p-subgroups of U(n) groups. We also prove some general results about U(n) groups including when the order of U(n) is a power of a prime. Finally we give a simple proof that every finite Abelian group is isomorphic to a subgroup of a U-group.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues