Browsing by Subject "Streams"
Now showing 1 - 18 of 18
- Results Per Page
- Sort Options
Item Amity Restoration Assessment: Water quality, fish, bugs, people(University of Minnesota Duluth, 2013) Axler, Richard P; Brady, Valerie; Ruzycki, Elaine; Henneck, Jerald; Will, Norman; Crouse, A; Dumke, Josh; Hell, Robert VThis project is also a new contribution from the Weber Stream Restoration Initiative (WSRI) that began in 2005 via private endowments to create a Partnership of university scientists and extension educators, and local, state and federal agency staff to restore and protect Lake Superior Basin trout streams (www.lakesuperiorstreams.org/weber/index.html). The WSRI features a demonstration project targeting the turbidity and sediment impaired Amity Creek watershed for multiple restoration activities. It was awarded an Environmental Stewardship Award from the Lake Superior Binational Forum in 2010 and was honored state-wide by the [Minnesota] Environmental Initiative in May 2013 by being awarded the “Partnership of the Year” for its activities, key elements being: (1) its website for local community education about watershed and water resource issues; (2) creation of interactive, on-line animations of real-time water quality with interpretive information from a site near Amity’s discharge into the Lester River just above its discharge into Lake Superior (within the St. Louis River AOC); (3) development of a multi-agency/organization partnership to pursue trout stream restoration and conservation activities throughout the western Lake Superior basin; (4) designing and carrying out two major Amity restoration projects in 2009 with the City of Duluth and South St. Louis SWCD; (5) mapping landscape stressors for highlighting areas of higher risk for environmental impacts as well as conducting a detailed reconnaissance of riparian zone sediment sources for priority remediation (SSL SWCD, 2009); and (6) developing a successful EPA Great Lakes Restoration Initiative (GLRI) project to fund additional restoration related activities from 2010-2014 (MPCA, NRRI-UMD, SSL SWCD partnership, 2010, $843,616).Item Assessing Impacts of Climate Change on Vulnerability of Brook Trout in Lake Superior’s Tributary Streams of Minnesota(University of Minnesota Duluth, 2013) Johnson, Lucinda B; Herb, William; Cai, MeijunWater temperature is generally considered one of the primary physical habitat parameter determining the suitability of stream habitat for fish species, with effects on the mortality, metabolism, growth, behavior, and reproduction of individuals. In this study we assessed the potential threats of climate change on stream temperatures and flow regimes in Lake Superior tributary streams in Minnesota, USA. The study included deterministic models for stream flow and temperature of three study streams (Amity Creek, Baptism River, Knife River), and regional (empirical) models for specific flow and temperature parameters to give better spatial coverage of the region. Information on stream flow, stream temperature, and land cover was used to develop a brook trout presence/absence model to understand the current pattern of distribution of brook trout and predict future distributions under future climate. The hydrology of north shore streams is mainly driven by air temperature and precipitation. Historical air temperatures in the region have a significant upward trend, particularly since 1980. Global climate model (GCM) outputs project a continued increasing trend in air temperature, with an increase in mean annual air temperature of 2 to 3 °C by 2089. The historical precipitation data shows an increasing trend for total annual precipitation at Duluth and Two Harbors between 1900 and 2010, whereas Grand Marais and Grand Portage do not have a clear trend. Based on an analysis of daily precipitation totals, there is some indication of an increasing trend in the number of days in summer with high precipitation (10-20 cm). Both the GENMOM and the ECHAM5 GCMs project overall increases in precipitation of about 15%, but differ with respect to the seasonal distribution of the precipitation changes. A significant and relatively certain impact of climate change is a projected shift in precipitation from snowfall to rainfall. While an increasing trend in precipitation leads to increasing streamflow, the increasing trend in spring and summer air temperature tends to reduce streamflow (by increasing evapotranspiration). Available streamflow records for north shore streams suggest there may be a decreasing trend in mean annual flow and summer low flow, but the trends are not statistically significant. Future projections of streamflow based on the GCM output were mixed, with the deterministic models projecting moderate increases in average stream flow and summer low flow, while the regression models for project a moderate decrease in low flow. Stream temperature analyses for the three study streams based on GCM climate output give the result of fairly uniform seasonal increases in stream temperature to 2089 ranging from 1.3 to 1.9 °C for the GENMOM model to 2.2 to 3.5°C for the ECHAM5 model. Application of the GENMOM climate data to the deterministic stream temperature models produced fairly similar stream temperature changes for the three study sites. The empirical stream temperature study found stream temperature in the north shore region to be influenced by air temperature, catchment size, percentage of woody wetlands, latitude, and soil permeability rate. In response to climate change projected by the GENMOM GCM, the regional stream temperature model projects July mean water temperature to rapidly increase by approximately 1.2oC from 1990s to 2060s, followed by a slight decrease to 2089. The temperature increase was predicted to be the largest in the coastal area of middle north shore region. The brook trout presence/absence model found water temperature to have the strongest influence on trout presence. Brook trout were predicted to be at risk for water temperatures above 18.7oC and be extirpated from streams for temperatures over 20oC. Stream flow was shown to have a negative effect on trout presence, though not as strong as water temperature. Overall, these data predict that brook trout may be extirpated from lower shore area, be exposed to increasing risk in middle shore region, and remain present in upper shore streams from the present to 2089. This work would benefit greatly from a number of modifications to the GCM’s, the spatial data used in the development of both the deterministic and empirical models, and implementation of a more detailed, spatially explicit, hydrologic model. Finally, additional fish data, including cool and warm water assemblage data, along with descriptors of landscape structure (i.e., connectivity) would allow us to assess the areas where cold water species may be threatened by the presence or potential presence of coolwater competitors.Item Bridge Scour Monitoring Technologies: Development of Evaluation and Selection Protocols for Application on River Bridges in Minnesota(Minnesota Department of Transportation, 2010-03) Lueker, Matthew; Marr, Jeff; Ellis, Chris; Winsted, Vincent; Akula, Shankar ReddyBridge failure or loss of structural integrity can result from scour of riverbed sediment near bridge abutments or piers during high-flow events in rivers. In the past 20 years, several methods of monitoring bridge scour have been developed spanning a range of measurement approaches, complexities, costs, robustness, and measurement resolutions. This project brings together the expertise of Minnesota Department of Transportation (Mn/DOT) bridge engineers and researchers, university hydraulic and electrical engineers, field staff, and inspectors to take the first steps toward development of robust scour monitoring for Minnesota river bridges. The team worked with Mn/DOT engineers to identify variables of scour critical bridges that affect the application of scour monitoring technology. The research team will used this information to develop a Scour Monitoring Decision Framework (SMDF) that will aid Mn/DOT in selecting the best technologies for specific sites. The final component of the project will involve testing the SMDF on five bridges in a case-study type demonstration; work plans for two of the sites were developed for demonstration of deployed instrumentation.Item Channel, Riparian and Catchment Features as Predictors of Wood Abundance in Low Gradient, Agricultural Streams(University of Minnesota Duluth, 2002) Johnson, Lucinda B; Host, George E; Richards, CarlWood is an important component of small to medium streams in forested regions, but has been little studied in agricultural areas. Although wood habitat has been shown to be an important factor controlling macroinvertebrate biodiversity in agricultural regions of the Midwestern U.S., there is little information on how much wood is available and what factors control its abundance and distribution. The goals of this study were to: 1) characterize the abundance, size, and distribution of wood in low gradient streams in a predominantly agricultural region, and 2) quantify the relative influence of reach- and catchment-scale factors on the abundance and distribution of wood in these streams. Standing stocks of wood were quantified in 49 stream reaches in the Saginaw Basin of central Michigan, USA. An array of stream channel, riparian zone, and catchment features were quantified. Multiple regressions were conducted to predict standing stocks from explanatory variables at three spatial scales. Features at the local scale (e.g., bank-full width, % open canopy) had a large influence on the density and size of accumulations, and a moderate influence on wood abundance. In contrast, riparian and catchment features including riparian vegetation type, link number, % urban land use in the catchment, and topographic heterogeneity exerted greater control over wood abundance and the mean size of wood accumulations. The differences in the factors predicting wood standing stocks versus accumulation density are probably related to the presence of structures that entrain wood into accumulations. In contrast, wood standing stocks reflect current and past land use practices, as well as underlying processes (e.g., hydrologic regime) controlled by landforms. Patterns in wood standing stock and distribution differ from those observed in high gradient regions, and low gradient streams in forested regions. This has important implications for ecosystem processes and management of headwater streams in agricultural regions.Item A Comparison of Macroinvertebrate Communities, Habitat, and Water Chemistry Along the Length of Miller Creek(University of Minnesota Duluth, 1992) Richards, Carl; Tucker, Paul; Kutka, FrankBiological communities in streams can serve as useful monitors of habitat and chemical conditions. Recently, the use of biomonitoring to examine water resource quality has become a popular alternative, or addition to standard water assessment protocols for the purposes of management and planning, problem prioritization, and documentation of recovery following remediation efforts. A general theoretical framework for the development of biosurveys has been discussed by Karr (1991). The advantages of using biosurveys for monitoring and assessment purposes include: 1) biological communities reflect overall ecological integrity and therefore may be the most accurate status of a waterbody, 2) biological communities integrate the effects of different pollutant stressors and thus provide a measure of aggregate impact, 3) biological communities integrate stresses over time and provide an ecological measure of fluctuating environmental conditions 4) routine biological monitoring can be relatively inexpensive compared to the costs of detailed chemical and toxicity testing, 5) biological communities are often of direct interest to the public as an indicator of a pollution free environment. Macroinvertebrate communities in streams are effective biomonitors in streams that are relatively stable in time and reflect subtle differences in environmental conditions (Richards and Minshall 1992). Furthermore, general guidelines towards development and use of these communities for biomonitoring have been published widely (Plafkin et al. 1989, OHIO EPA 1987). These approaches follow the suggestions of Karr (1991) in that they utilize multiple community metrics to evaluate instream biological impairment. This approach consists of analyzing different components of the structure and function of macroinvertebrate communities. Each metric contributes ecological information on the integrity of the community in question. Several studies have reported the use of the metric approach with macroinvertebrates in streams (Barbour et al. 1992). Since many aspects of biological communities are dependant on regional and local characteristics, it is necessary to interpret biomonitoring data in light of unique regional characteristics. The purpose of the present study was to examine macroinvertebrate communities at several locations along Miller Creek to determine if biomonitoring techniques indicate significant problems along the watercourse, to compare various techniques for assessment, and to provide a preliminary database for future comparison.Item Conservation Design Toolkit for LakeSuperiorStreams.org Stormwater Pollution Prevention Pilot Project(University of Minnesota Duluth, 2006) Axler, Richard P; Schomberg, Jesse; Will, Norman; Reed, Jane; Lonsdale, David; Granley, Mindy; Hagley, CynthiaDuluth, Minnesota has 43 named streams, 12 trout streams, and borders both pristine Lake Superior and the Duluth-Superior-Harbor Area of Concern. Duluth's storm water infrastructure includes 93 miles of streams and wetlands, and urbanization and rural development impact these waters by increasing runoff and velocity, temperature, turbidity and sediment, road salt, organic matter and nutrients. In 2002, an EPA (Environmental Monitoring for Public Access & Community Tracking) grant established a Partnership called DuluthStreams between the City of Duluth, University of MinnesotaDuluth professionals at the Natural Resources Research Institute and Sea Grant Program, and the Minnesota Pollution Control Agency and Western Lake Superior Sanitary District. Their goal was to enhance public understanding of streams and their connections to watershed land use by using real-time data and interpretive materials to illustrate the nature and consequences of degraded stormwater and its real costs to society. This has included issues associated with too much runoff such as flooding, with a key issue in the region being sanitary sewer overflows from infiltration and inflow (I&I). These events have imposed risks to public health and environmental risks to the coastal zone of Lake Superior and the Duluth-Superior Harbor, and required costly programs to reduce stormwater flows from key neighborhoods and construct storage tanks for temporary storage of stormwater enhanced sanitary sewer flows. The consequences of excess water and peak flows have also included excess sediment and turbidity, and potentially excess nutrients and pathogens. High salt concentrations for significant periods in late winter and early spring runoff from winter road and parking lot de-icing can present additional stress to trout and their prey. Increasing impervious surface and direct and indirect removal of riparian vegetation increases peak temperatures, especially during base flow periods creating additional periods of stress to cold water species with the additional potential stress of lowered dissolved oxygen. In 2003, sixteen governments and groups in the North Shore Region joined to form the Regional Stormwater Protection Team (RSPT). The Team's mission is to protect and enhance the region's shared water resources through stormwater pollution prevention by providing coordinated educational programs and technical assistance. One of the vehicles that the RSPT has harnessed for its stormwater education campaign is the DuluthStreams website as part of a regional effort to provide water pollution information to the public. The project has now expanded to now include 22 communities, agencies and organizations. In 2005 the website was re-named lakesuperiorstreams.org to reflect the broader geographic region that it represents in terms of climate, soils, quality of life, natural resources, the Lake Superior watershed, and culture. The website now averages more than 300,000 "hits"/month and >75,000 "page requests"/mo with a national target audience that includes: the general public; students and teachers; contractors, consultants and developers; decision makers; and agencies (local, state, and federal). Additional information is best found by examining http://lakesuperiorstreams.org.Item Data for Discovery and Decision-Making: LakeSuperiorStreams.org(University of Minnesota Duluth, 2010) Axler, Richard P; Will, Norman; Henneck, Jerald; Carlson, Todd; Ruzycki, Elaine; Host, George E; Sjerven, Gerald; Schomberg, Jesse; Kleist, Chris; Hagley, CynthiaAn estimated 720 perennial and 127 intermittent streams flow into L. Superior, including 309 trout streams and their tributaries (>2100 miles) along the North Shore and St. Louis River Estuary alone. Bedrock escarpments create a high density of stream corridors in forested watersheds with steep gradients, thin erodible soils, typically low productivity, and “flashy” hydrology. These high-quality trout streams are sensitive to urbanization and rural development by factors raising water temperature and increasing water and sediment runoff, e.g. openings in riparian cover/canopy, impervious surfaces, road crossings, construction runoff, and the warming and increased frequency of severe storms predicted by climate change models (Wuebbles & Hayhoe 2003). Tributary streams are increasingly threatened by development as urbanization and rural development place increased pressure on the Lake Superior region’s coastal communities. Between 1992 and 2001, a 33% increase in low-intensity development occurred within the basin with an alarming transition from agricultural lands to urban/suburban sprawl (Wolter et al. 2007). In the early 1990s, over 50 new lodging establishments were constructed along the Superior North Shore, and from 1990-1996 Cook County, MN experienced a 24% population increase (MPCA 2000). Stream fish, amphibians, and the invertebrates that sustain them are being adversely impacted by increased temperature, excessive peak flows, turbidity and suspended solids, road salts, organic matter, and nutrients from increased development (Anderson et al. 2003). This conclusion is supported by the fact that 11 of 27 major Minnesota North Shore trout streams have been listed as Impaired (2010) since the 1990s and remain on the State 303(d) list - primarily for turbidity, temperature, and fish tissue-Hg. The integrity of these watersheds is also critical to the condition of the coastal and offshore waters of Lake Superior. The streams discharge directly into the nutrient and sediment sensitive coastal zone of ultra-oligotrophic L. Superior, or indirectly into the lake via the St. Louis River Estuary, itself an IJC designated Area of Concern and a zero discharge (of persistent organic pollutants (IJC 1999; MPCA 2000), in part because of its levels of phosphorus and suspended sediment. This is particularly important because the lake’s nearshore zone is the source of much of its biological productivity and recreational use, but is nutrient deficient and therefore, very sensitive to excess inputs of nutrients, suspended solids, turbidity and organic matter (e.g. Sterner et al. 2004; Rose and Axler 1998). Therefore, despite the fact that Lake Superior and its tributaries are among the most pristine waters in Minnesota and in the entire Great Lakes Basin, some of these resources are already stressed by increased urbanization and tourism. This creates the unusual challenge of how to inform the public, businesses, and local units of government (LGUs) that these resources need protection when few problems are obvious to the untrained eye. This project has built on the foundation established by the award-winning project www.LakeSuperiorStreams.org (LSS) that was created in 2002 via an EPA grant to a Partnership of the City of Duluth Stormwater Utility, the University of Minnesota –Duluth (Natural Resources Research Institute, Minnesota Sea Grant, and Department of Education), the Minnesota Pollution Control Agency (Duluth Office), the Western Lake Superior Sanitary District, the Great Lakes Aquarium, and the Lake Superior Zoo (Axler et al. 2006, 2003; Lonsdale et al. 2006). The original partnership has remained substantially intact since 2002. The ultimate goal continues to be to improve environmental decision-making by: (1) Enhancing public understanding of the connections between weather, hydrology, land use and the condition of water resources in urban and rural watersheds, and (2) Providing easy access to tools for accomplishing the protection of un-impaired resource and cost-effective restoration of degraded sites.Item Developing a Diagnostic Tool for Assessing Excessive Sediment Harm to Stream Communities(University of Minnesota Duluth, 2013) Brady, Valerie; Herrera, LarissaExcess sediment is a top cause of impairment in U.S. rivers and streams. A number of streams on the north shore of Lake Superior’s western arm are on the Minnesota Pollution Control Agency’s impaired waters list due to turbidity problems. The underlying geology of the north shore, in addition to the steep slopes of the Lake Superior escarpment, forms a stream base vulnerable to erosion and excessive sediment deposition in streams. This vulnerability is created, at least in part, by an area of clay loam soil that many north shore stream channels intersect as they come down the escarpment to the shore of Lake Superior. The steep slopes cause high stream velocities which, combined with the high erodability of this soil layer, create high erosion potentials, particularly on outside channel bends. The increased fine sediments traveling through and accumulating in stream substrates potentially presents several problems for aquatic biota. Excess sediment deposits reduce habitat space for aquatic macroinvertebrates, which are vital components of the food web. In addition to potentially decreasing food sources for fish, the excess sediment deposits can bury fish spawning habitats. Even if the fish can clean off nesting areas, they will expend extra energy doing so. There are many stream condition indicators using stream fish or macroinvertebrates, but none address excess sediment specifically. In many areas of the country there are any number of human‐caused stressors affecting stream condition, including agricultural runoff, high stormwater discharges, loss of stream shoreline habitat, deforestation, development, and industrial discharges. When there are many stressors impacting streams, it is hard to differentiate among them to determine which stressors are creating which problems for stream biota. While some north shore streams have non‐turbidity impairments, there are considerably fewer than in other parts of the country. The dominance of erosion‐based impairments provided the opportunity to develop an indicator diagnostic of excessive sediment deposition in stream substrate as the cause of biotic impairment in north shore streams. We selected stream macroinvertebrates for indicator development for several reasons. They are less mobile than fish, meaning that they have limited ability to escape from disturbance, and even more limited ability to return after a disturbance ceases (at least until the next generation begins). Macroinvertebrates are easy to collect, are present in relatively high abundances, and have high morphological diversity. For all of these reasons, macroinvertebrates are commonly used in stream condition assessments, and their use is ubiquitous across the US and across agencies. Because most agencies collect stream macroinvertebrate information already, their use to create a diagnostic indicator could allow agencies and managers to get more information out of data they already have, without the need for additional sampling. The goal of this project was to develop a suite of stream macroinvertebrate metrics diagnostic of invertebrate community impairment caused by excessive fine sediment deposition in stream substrate; in other words, burial or partial burial of streambed rocks by sand, silt, and clay. Such a diagnostic tool would aid managers in their stream assessment work. While similar projects have been previously attempted (and failed) in other parts of the country, most have been in areas suffering from a number of stressors, making development of an indicator diagnostic of just sediment impairment more difficult. Our hope in attempting such work using north shore streams was that the relative lack of other stressors in northeastern Minnesota would make the development of such an indicator more possible. Having such an indicator should help agencies make a stronger connection between the Total Maximum Daily Load (TMDL) turbidity measurements and sediment deposition presumed to be causing harm to stream biota.Item Development of Macroinvertebrate Biocriteria for Streams of Minnesota's Lake Superior Watershed(University of Minnesota Duluth, 2000) Stroom, Kevin; Richards, CarlGenus-level macroinvertebrate data from reference and disturbed streams were used to develop and test biocriteria for 1st - 3rd order streams in Minnesota’s Lake Superior Watershed (LSW). Fifteen metrics, most used elsewhere, were investigated for utility. Five metrics failed because of high correlation or inability to differentiate disturbed streams. Ten metrics were combined into a multimetric index. Metric values were scored relative to metric biocriteria according to EPA protocols and summed for each stream The minimum reference stream score defined the index biocriterion. Eleven urban or agricultural/rural stream scores were compared to the index biocriterion to test its ability to reveal impairment in test streams. Reference and disturbed stream scores were statistically different (p < 0.01). Urban streams were better separated from the reference condition (p < 0.001) than Ag/Rural streams (p < 0.01). The index biocriterion detected impairment in eight of the disturbed streams, while two streams scored within the safety buffer where a judgement of impairment was uncertain but possible. One stream scored slightly above the biocriterion. Several metrics which were useful elsewhere were also effective here, while others were not. The locally-tailored multimetric index and associated biocriteria developed here were effective in assessing stream ecosystem health in appropriate areas of the LSW. GIS analysis of subwatershed land use/cover showed that even moderate percentages of developed + hay/pasture/grass land covers (12-15%) and developed + hay/pasture/grass + roads (15-17%) resulted in some streams scoring as impaired. Therefore, LSW streams appear to be relatively fragile environments requiring careful watershed management. Methodologies involving chironomid inclusion, sample processing, sample size, and reach location were investigated. Chironomid abundance varied among Reference streams by more than an order of magnitude, though % chironomids varied less. Thus, inclusion of family-level chironomid data may increase variability in metrics involving abundance. A high percentage of taxa were “rare” at levels of <2 and <4 individuals per replicate; 34.0 and 48.0 % respectively for Reference streams and 44.2 and 61.2 for Disturbed streams. Thus, subsampling may strongly influence richness metric values, suggesting whole LSW samples should be processed for maximum assessment effectiveness. A richness/area curve showed continual increase through 5 replicates, thus, collecting fewer samples may reduce biocriteria effectiveness in the LSW if samples are composited. Metric scores were often significantly different in the three Kimball Cr. sample reaches, thus reach location may be an important consideration in developing biocriteria in the LSW.Item DuluthStreams heads north: Making North Shore stream data make sense to citizens and local officials(University of Minnesota Duluth, 2007-09-25) Axler, Richard P; Will, Norman; Host, George E; Henneck, Jerald; Lonsdale, David; Sjerven, Gerald; Reed, Jane; Ruzycki, Elaine; Hagley, Cynthia; Schomberg, Jesse; Carlson, Todd; Lonsdale, MarnieThe Duluth Streams website initially focused primarily within City of Duluth boundaries, but some of the streams that intersect Duluth originate in the surrounding communities of Hermantown and Proctor. In addition, Duluth and Superior share the St. Louis River watershed. The current project enabled us to fully expand the DuluthStreams website into a regional entity. It was built on a previous, but limited, Lake Superior Coastal Program Enhancement Fund effort to Minnesota Sea Grant at the University of Minnesota and partners that created web links to Proctor, Hermantown and Superior on the DuluthStreams website. This made these communities ideal as the first candidates for a regional expansion. As the project continued to evolve it became clear from discussions within the RSPT and with state agencies that there was a need to expand the focus area of the website to include the “greater Western Lake Superior” region and more specifically the Minnesota North Shore and Wisconsin South Shore in order to better manage Superior Basin water resources by supporting the mission of the RSPT regarding developing regional technical cooperation and collaboration, common educational materials, and presentation of case studies of successful stormwater designs. Minnesota streams draining into the Lake Superior coastal zone and St. Louis River Estuary are typically sensitive, low productivity, high-quality trout streams. Some (Miller, Amity, Lester, Talmadge, French, Poplar, Brule) are currently listed on the MN Clean Water Act (303d) List of Impaired Waters - most commonly for turbidity and Fish-Hg (MPCA 2006). Steep topography and thin, erodible soils make these streams particularly sensitive to development. Effective management and remediation of these streams requires an understanding of their physical, chemical, and biological characteristics, which can only be obtained by monitoring, particularly during storm and snowmelt runoff events, when the most dramatic impacts occur. These data are critical for developing and assessing BMPs, particularly in the face of increased development in the high growth watersheds along the North Shore of Lake Superior (e.g. Anderson et al. 2003; MPCA 2000; IJC 1999). MPCA initiated long-term monitoring of 6 critical streams along the North Shore in 2002. However, MPCA has lacked the resources to install automated water quality sensors, which are needed to capture critical pollutant loading events during high flows - important for developing cost-effective remediation and mitigation strategies.Item DuluthStreams.org: Community Partnerships for Understanding Urban Stormwater and Water Quality Issues at the Head of the Great Lakes(University of Minnesota Duluth, 2004-12) Axler, Richard P; Lonsdale, Marion; Reed, Jane; Hagley, Cynthia; Schomberg, Jesse; Henneck, Jerald; Host, George E; Will, Norman; Ruzycki, Elaine; Sjerven, Gerald; Richards, Carl; Munson, BruceThis final report summarizes the accomplishments of the Duluth Streams Partnership from its inception through an EPA Environmental Monitoring for Public Access and Community Tracking (EMPACT) Program grant in January 2002 through September 2004. Duluth, Minnesota lies at the westernmost end of Lake Superior, the source and headwaters of the entire Laurentian Great Lakes ecosystem. Although perhaps better known for its extremely cold winters, Duluth residents and visitors know it as a city of forested hills, wetlands and trout streams with 42 named creeks and streams moving through the City in 30 subwatersheds. Duluth's park system is one of the most extensive in the nation, and the City owns and maintains 11,000 acres, including 125 municipal parks. Streams form the fabric of the aesthetic appeal and character of Duluth (Duluth Vision 2000), but are also the core of the City’s stormwater runoff system, with 250 miles of storm sewer, 93 miles of creek, 4,716 manholes, 2 lift stations, 13 sediment boxes, and over 138 miles of roadway ditches. Urbanization and rural development have placed increased pressure on the region’s coastal communities and on Duluth’s urban streams, in particular, on the 12 (with 2 more pending) that are designated as Trout Streams and 14 that are classified as Protected Waters. In addition, since the early 1990s, over 50 new lodging establishments were constructed along Lake Superior’s North Shore. One county located along the North Shore of Lake Superior (Cook) experienced a 24% population increase during that time. Stream communities of fish and amphibians and the invertebrates that sustain them are being adversely impacted by increased temperature, excessive turbidity and suspended solids, road salts, organic matter, and nutrients. Some of these streams have been placed on the Minnesota List of Impaired Waters, and several have been targeted for Total Maximum Daily Load (TMDL) development. Further, all of these streams discharge either directly into ultra-oligotrophic Lake Superior or indirectly via the St. Louis River Estuary- Duluth Superior Harbor. This is particularly important because Lake Superior has been designated as a zero-discharge demonstration project by the International Joint Commission for eliminating inputs of persistent toxic chemicals to the Great Lakes system. Second, the lake’s nearshore zone, the source of much of its biological productivity, is extremely nutrient deficient and sensitive to increased inputs of nutrients, suspended solids, turbidity, and organic matter. Lastly, the Harbor itself is one of the 43 Great Lakes Areas of Concern (AOCs) because of serious impairments to its beneficial uses. There are also significant social and economic impacts associated with this region - the Minnesota DNR reports that angling in North Shore streams and Lake Superior produces $63 million in direct sales and income and over 1,200 jobs. For North Shore streams alone, the numbers are over $33 million direct sales and income, and over 435 jobs. Stormwater issues have become increasingly important to resource and regulatory agencies and to the general public. In 1998 the City of Duluth established a stormwater utility to address the quality and quantity of surface water moving through the City and in 2003 was issued a Stormwater Permit under Phase II of the federal Clean Water Act’s National Pollution Discharge Elimination System (NPDES). Beginning in January 2002, under funding through EPA EMPACT in combination with in-kind effort from various agencies, the Natural Resources Research Institute (NRRI) and Minnesota Sea Grant formed a partnership with the City of Duluth, the Minnesota Pollution Control Agency (MPCA), the Great Lakes Aquarium, and the Western Lake Superior Sanitary District (WLSSD) to create Duluth Streams. Additional partners have since joined together to form a Regional Stormwater Protection Team (RSPT). The Partnership's chief goal is to enhance the general public's understanding of aquatic ecosystems and their connections to watershed land use to provide both economic and environmental sustainability. The project’s majors objectives were to: 1) link real-time remote sensing of water quality in four urban streams and GIS technology to current and historical water quality and biological databases (all 42 Duluth streams) using advanced data visualization tools in World Wide Web and information kiosk formats; 2) incorporate visually engaging interpretive text, animations and videos into the Duluth Streams website to illustrate the nature and consequences of degraded stormwater and the real costs to society; and 3) engage the public in the stormwater issue via programmatic activities such as establishing high school directed neighborhood stewardship and/or monitoring of 3 streams, developing curricula for high school and college students for inclusion in our Water on the Web curriculum, hosting a Duluth Streams Congress as a community forum for presenting all project results, and adapting the Nonpoint Education for Municipal Officials (NEMO) program to the greater Duluth Metropolitan Area. This final report summarizes the accomplishments of the Duluth Streams Partnership from its inception in January 2002 through September 2004. The website at htttp://duluthstreams.org is the focus of the project and offers water quality, biological, and GIS data in the context of a variety of school- and community-oriented educational material.Item Field Guide for Maintaining Rural Roadside Ditches(2014) Brady, Valerie; Axler, Richard P.; Schomberg, JesseItem Identifying Erosional Hotspots in Streams along the North Shore of Lake Superior, Minnesota using High-Resolution Elevation and Soils Data(2013) Wick, Molly JaneThis is a University of Minnesota Water Resources Science master’s thesis describing original research to determine fluvial erosion in three coastal streams (Amity, Talmadge and French) of Minnesota’s Lake Superior shoreline. All three streams have elevated levels of turbidity, with potential for damage to fisheries. The goal of this project was to develop a GIS-based model using new, openly-available, high-resolution LiDAR datasets to predict erosional hotspots at a reach scale. The abstract summarizing the study’s key findings is extracted and reproduced below. Abstract: “Many streams on the North Shore of Lake Superior, Minnesota, USA, are impaired for turbidity driven by excess fine sediment loading. The goal of this project was to develop a GIS-based model using new, openly-available, high-resolution remote datasets to predict erosional hotspots at a reach scale, based on three study watersheds: Amity Creek, the Talmadge River, and the French River. The ability to identify erosional hotspots, or locations that are highly susceptible to erosion, using remote data would be helpful for watershed managers in implementing practices to reduce turbidity in these streams. “Erosion in streams is a balance between driving forces, largely controlled by topography; and resisting forces, controlled by the materials that make up a channel’s bed and banks. New high-resolution topography and soils datasets for the North Shore provide the opportunity to extract these driving and resisting forces from remote datasets and possibly predict erosion potential and identify erosional hotspots. We used 3-meter LiDAR-derived DEMs to calculate a stream power-based erosion index, to identify stream reaches with high radius of curvature, and to identify stream reaches proximal to high bluffs. We used the Soil Survey Geographic (SSURGO) Database to investigate changes in erodibility along the channel. Because bedrock exposure significantly limits erodibility, we investigated bedrock exposure using bedrock outcrop maps made available by the Minnesota Geological Survey (MGS, Hobbs, 2002; Hobbs, 2009), and by using a feature extraction tool to remotely map bedrock exposure using high-resolution air photos and LiDAR data. “Predictions based on remote data were compared with two datasets. Bank Erosion Hazard Index surveys, which are surveys designed to evaluate erosion susceptibility of banks, were collected along the three streams. In addition, a 500-year flood event during our field season gave us the opportunity to collect erosion data after a major event and validate our erosion hotspot predictions. Regressions between predictors and field datasets indicate that the most significant variables are bedrock exposure, the stream power-based erosion index, and bluff proximity. A logistic model developed using the three successful predictors for Amity Creek watershed was largely unsuccessful. A threshold-based model including the three successful predictors (stream power-based erosion index, bluff proximity, and bedrock exposure) was 70% accurate for predicting erosion hotspots along Amity Creek. The limited predictive power of the models stemmed in part from differences in locations of erosion hotspots in a single large-scale flood event and long-term erosion hotspots. The inability to predict site-specific characteristics like large woody debris or vegetation patterns makes predicting erosion hotspots in a given event very difficult. A field dataset including long-term erosion data may improve the model significantly. This model also requires high resolution bedrock exposure data which may limit its application to other North Shore streams.”Item Identifying the Impact and Efficacy of Watershed Management on an Urban Stream(2020-02) Distel, JohnMichaelRestoration and management of water resources have become a common counter to the degradation of hydrologic ecosystem services, specifically from the effects of urbanization. This project used a long-term data set to see if changes in discharge and concentration-discharge relationships could be attributed to water resources management at the watershed scale and for specific streamside infrastructure. The stream at the focus of this inquiry is Minnehaha Creek. It flows through the west metropolitan Minneapolis, Minnesota area – located in the north-central region of the United States. Two data sets were used in this study: 1) mean daily discharge, collected by a United States Geological Survey (USGS) stream gauge from 2007 – 2018, and 2) flow and water chemistry data, collected by the Minnehaha Creek Watershed District (MCWD) from 2009 – 2017. The water chemistry parameters used in the analysis include total phosphorus (TP), total nitrogen (TN), total suspended solids (TSS). Analysis showed an increase in discharge moving through the stream over time, likely due to increases in precipitation. Increasing minimum flows point to increasing shallow groundwater contributions and, therefore, increased infiltration across the watershed – a goal of the stormwater management within the Minnehaha Creek watershed. All C-Q relationships were negative and, corresponding to the discharge trends, concentrations decreased over time. However, flux of solutes remained steady. With increasing flows, a decrease in concentration with no change in flux is indicative of a reduction in sediment and solute transport – another goal of watershed management. No significant influence from the specific infrastructure analyzed in this study was observed. This is likely due to the data’s collection rate. Recommendations on improving data collection include adding temporal variety and ensuring representation of all levels of discharge. Recommendations are broken into three main categories: 1) assurance of representative sampling, 2) inclusion of temporal range in data collection and 3) broad distribution of sampling locations.Item Identifying The Impacts Of Excess Fine Sediment On Benthic Macroinvertebrate Communities(2016-03) Herrera, LarissaMany streams throughout the United States are negatively impacted by excess fine sediments (sand, silt, and clay). Benthic macroinvertebrates are a commonly-used tool to assess stream condition; however, current methodologies typically are not able to distinguish among stressors. Previous studies have correlated macroinvertebrate communities and traits with excess fine sediments, demonstrating that aquatic macroinvertebrates are sensitive to deposited fine sediment and the assemblages will shift in response. Western Lake Superior streams have a wide range of fine sediment amounts due to clay and sand soils, but have low amounts of other stressors, and thus are a good region to investigate relationships between macroinvertebrate traits and fine sediments. Data were collected from 22 stream sites located along the north shore of Lake Superior in 2010. The data collected in 2010 did not have the desired gradient of fine sediment due to wet conditions that year; therefore, the data were supplemented with data collected by NRRI personnel in earlier years (1997 – 2008). The five sediment stressors used in analyses included percent embeddedness, depth of fine sediments, total percent fine sediments, percent sand, and a combined sediment index created using normalized and transformed embeddedness, depth of fine sediments and total percent fine sediments. Fifty-seven specific taxonomic groups and macroinvertebrate physical and behavioral characteristics (traits) were tested as potential response metrics in linear regressions. In addition, TITAN analyses were used to look for thresholds or sediment stressor values at which a taxon increases greatly, decreases greatly, or disappears from a community. Both the linear regressions and TITAN analyses showed a change in the community structure under conditions of excess sediment in the form of embeddedness, total fines, depth of fines, and/or the combined sediment index. The TITAN analyses also showed a change in the community structure due to increasing proportion sand in the streambed. Furthermore, the analyses identified potential characteristics that may specifically make a particular macroinvertebrate more or less vulnerable to excess fine sediments.Item Mercury in Streams at Grand Portage National Monument: Evidence of Ecosystem Sensitivity and Ecological Risk(2012) Wiener, James GThis is a 4-page pdf, which apparently has not been published although the paper reviewers are named. The origin of the paper is unclear, and it should be regarded as “gray” literature. Key points are extracted and reproduced below. “In 2008, the University of Wisconsin-La Crosse began quantifying mercury in aquatic food webs in six national park units in the western Great Lakes region, including Grand Portage National Monument (GRPO). Principal objectives are (1) to identify parks and water bodies where concentrations of methylmercury are high enough to adversely affect fish and wildlife, and (2) to assess spatiotemporal patterns in methylmercury contamination of aquatic food webs. Methylmercury is a highly toxic compound that readily bioaccumulates in exposed organisms and can biomagnify to harmful concentrations in organisms in upper trophic levels of aquatic food webs. Study sites at GRPO include Snow Creek (beaver pond in upper reaches and lower reaches), Poplar Creek (south branch), and Grand Portage Creek (lower reach). Analytical results reveal elevated concentrations of both total mercury and methylmercury in these stream systems... Concentrations of total mercury and methylmercury in streamwater from GRPO are substantially higher than concentrations typically found in lakes and streams in the western Great Lakes region. “Bioaccumulation and ecological risk. In 2010, prey fish were sampled from three streams in the park and analyzed whole for total mercury, which accumulates in fish as methylmercury. Mean concentrations were highest, exceeding 100 ng/g wet weight (nanograms per gram, equivalent to parts per billion) in blacknose dace (Rhinichthys atratulus) and longnose dace (Rhinichthys cataractae) from Poplar Creek. These mean concentrations in dace substantially exceed the estimated dietary threshold (40 ng/g wet weight in prey fish) associated with reproductive effects of mercury on piscivorous fish that feed on prey fish (Depew et al. in press). Mean concentrations of mercury in most of the other prey fishes analyzed also exceeded the 40 ng/g threshold for reproductive effects on piscivorous fish; these included creek chub (43 ng/g) and central mudminnow (56 ng/g) from Poplar Creek, fathead minnow (58 ng/g) and central mudminnow (55 ng/g) from Snow Creek, and longnose dace from Grand Portage Creek (67 ng/g). The maximal concentrations in individual fish were 242 ng/g in blacknose dace and 211 ng/g in longnose dace. These maximal values exceed dietary thresholds associated with adverse effects of methylmercury on the health and reproduction of fish-eating birds. “The high concentrations of methylmercury in larval dragonflies may indicate significant risks for insectivorous songbirds that forage and nest near streams at GRPO. Studies in eastern North America have documented unexpectedly high concentrations of mercury (present as methylmercury) in certain terrestrial invertivores, including passerine songbirds. Most songbirds with elevated concentrations of mercury are linked trophically to mercury-methylating environments—such as wetlands, streams, or lakes—and feed on spiders or emergent insects with aquatic larval stages. Methylmercury in the diet of reproducing female birds is transferred rapidly to the developing egg, and the embryo is the most sensitive life stage. Methylmercury exposure and its potential effects on reproductive success of invertivorous songbirds at GRPO has not been assessed but merits critical evaluation.”Item Miller Creek Macroinvertebrate, Habitat, and Temperature Report(University of Minnesota Duluth, 2010) Brady, Valerie; Breneman, DanWe sampled benthic macroinvertebrates and stream habitat at five locations in Miller Creek during late May 2008 as part of a TMDL (total maximum daily load) study on temperature. Data collected included: macroinvertebrate community composition, in-stream habitat for invertebrates and fish, stream bottom substrate types, and sediment particle size distribution. These data were linked with temperature logger data supplied by the South Saint Louis Soil and Water Conservation District (SSL SWCD) at or near these five sites, as well as additional sites (total of 27 stations) along the creek. Miller Creek macroinvertebrate and habitat samples were compared to data from several other streams where samples were collected during the early summer.Item North Shore Community Features: Aquatic resources and growth scenarios(University of Minnesota Duluth, 2009) Brady, Valerie; Schomberg, Jesse; Sjerven, GeraldNorth shore communities have recently been growing rapidly, and coastal streams are showing signs of stress. One third of north shore streams are on the MPCA list of impaired waters, including the Lester-Amity system (www.pca.state.mn.us/water/tmdl/tmdl-303dlist.html) . Similar rapid development has been happening all around the coasts of the U.S. (Bartlett et al. 2000). However, few communities have the tools to forecast the potential effects of future growth on their natural and aquatic resources, or to evaluate various growth or zoning scenarios. Nor is it always obvious how the effects of various zoning regulations will be manifested on any given landscape. Insidious cumulative effects of small incremental land use changes can be quite difficult to detect or predict until much of the damage has already occurred. These effects and interactions can be made much more specific and obvious by creating GIS-based maps of the landscapes in question, showing potential development of particular areas of land based on a community’s current zoning and also on alternative zoning options. These location-specific maps can highlight areas where current zoning scenarios have the potential to allow degradation of important aquatic resources and natural features. This knowledge can allow a community to act and create alternative, more protective, zoning scenarios that will reduce future restoration costs by reducing or preventing the harm from occurring in the first place.