Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Statistical Process Control"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Bayesian approach to Phase II statistical process control for time series
    (2013-04) Zhou, Tianyang
    In statistical process control (SPC) problems, in-control values of parameters are required by traditional approaches. However this requirement is not realistic. New methods based on the change point model have been developed to avoid this requirement. The existing change-point methods are restricted to independent identically distributed observations, ignoring the numerous settings in which process readings are serially correlated. Furthermore, these frequentist methods are unable to make use of prior imperfect information on the parameters. In my research, I propose a Bayesian approach to the online SPC based on the change point model in an ARMA process. This approach accommodates serially correlated data, and also provides a coherent way of incorporating prior information on parameters.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues