Browsing by Subject "Spatiotemporal data"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Approximate search on massive spatiotemporal datasets.(2012-08) Brugere, IvanEfficient time series similarity search is a fundamental operation for data exploration and analysis. While previous work has focused on indexing progressively larger datasets and has proposed data structures with efficient exact search algorithms, we motivate the need for approximate query methods that can be used in interactive exploration and as fast data analysis subroutines on large spatiotemporal datasets. This thesis formulates a simple approximate range query problem for time series data, and proposes a method that aims to quickly access a small number of high-quality results of the exact search resultset. We formulate an anytime framework, giving the user flexibility to return query results in arbitrary cost, where larger runtime incrementally improves search results. We propose an evaluation strategy on each query framework when the false dismissal class is very large relative to the query resultset and investigate the performance of indexing novel classes of time series subsequences.Item Bayesian spatiotemporal modeling using spatial hierarchical priors with applications to functional magnetic resonance imaging(2015-01) Bezener, Martin AndrewFunctional magnetic resonance imaging (fMRI) has recently become a popular tool for studying human brain activity. Despite its widespread use, most existing statistical methods for analyzing fMRI data are problematic. Many methodologies oversimplify the problem for the sake of computational efficiency, often not providing a full statistical model as a result. Other methods are too computationally inefficient to use on large data sets. In this paper, we propose a Bayesian method for analyzing fMRI data that is computationally efficient and provides a full statistical model.