Browsing by Subject "Soft Matter"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Data supporting Laves Phase Field in a Diblock Copolymer Alloy(2022-04-06) Magruder, Benjamin R; Park, So Jung; Collanton, Ryan P; Bates, Frank S; Dorfman, Kevin D; dorfman@umn.edu; Dorfman, Kevin D; Dorfman Research Group - University of Minnesota Department of Chemical Engineering and Materials ScienceWe have used self-consistent field theory to predict a phase field in a blend of micelle-forming AB and B'C diblock polymers with different lengths and incompatible core blocks. The resulting paper was published in Macromolecules (doi.org/10.1021/acs.macromol.2c00346). The data were generated using the Fortran version of the open-source software PSCF (https://pscf.cems.umn.edu/). All input and output files from PSCF used to generate the data in the paper are included in this dataset, as well as the code used to process the data and generate the figures.Item Electrokinetic Phenomena and Singularity-Driven Flows in Nematic Liquid Crystals(2017-11) Conklin, ChristopherElectrokinetic phenomena, including electrophoresis and electroosmosis, provide a significant tool for engineering the transport of fluids and particles at microscopic scales. This thesis describes additional mechanisms for generating electrokinetic flow by using a nematic liquid crystal electrolyte. Under an applied electric field the anisotropic properties of the liquid crystal lead to separation of ionic impurities present in the fluid, which couple with the applied field to produce electrostatic forces that drive fluid and particle motion. This force is quadratic in the electric field, implying that systematic flow occurs even in the presence of an oscillating field. This thesis presents numerical and analytical investigations of this electrokinetic mechanism. We show that the charge density and fluid velocity of a system depends strongly on the topology of the liquid crystal orientation, and we present results for several distinct configurations, including periodic distortions, isolated disclinations, and particle suspensions. We also show that liquid crystal electrokinetic systems can be designed to mimic the behaviors of active nematics – collections of particles which can self-propel along a particular direction.