Browsing by Subject "Shrubs"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Assessing the Use of Shrub-Willows for Living Snow Fences in Minnesota(Minnesota Department of Transportation, 2015-11) Zamora, Diomy S.; Ogdahl, Eric; Wyatt, Gary; Smith, David J.; Johnson, Gregg; Current, Dean; Gullickson, DanBlowing and drifting snow adversely affect winter driving conditions and road infrastructure in Minnesota, often requiring removal methods costly to the state and environment. Living snow fences (LSFs)—rows of trees, shrubs, grasses, or standing corn installed on fields upwind of roadways—are economically viable solutions for controlling drifting snow in agricultural areas. Despite incentives and financial assistance by state and federal agencies, farmer adoption of LSFs is low, in part due to concerns about removing cropland from production. Of recent interest in Minnesota is the use of shrub-willows (Salix spp.) for LSFs, as they have been successfully implemented for LSFs in other states and are researched increasingly as a marketable biomass product for bioenergy production. To evaluate the potential of willow LSFs for multiple benefits in Minnesota, we established studies in Waseca, Minnesota, 1) to test different designs of willow LSFs in their ability to trap snow, 2) to compare the growth of willow varieties to willows native to Minnesota and other species traditionally used in LSFs, and 3) to assess the costs of planting and establishing a willow snow fence and the viability of biomass harvest. We found all shrubs to have generally high survival rates, with willows tending to have higher growth than traditional LSF shrubs. Additionally, willow LSFs may have the potential to trap all blowing snow at the study site as soon as three to four years after planting. This may provide earlier road protection than other shrub species traditionally used in LSFs. Regarding economics, willows can provide affordable LSFs relative to traditional LSF species, although harvesting for biomass may only be appropriate for very long transportation corridors.Item Diseases of Trees and Shrubs: Color Diagnostic Guide(St. Paul, MN: University of Minnesota Extension Service, 1996) Ash, Cynthia L.; Draper, Martin A.; Lamey, H. Arthur; Gallenberg, Dale J.Item Planting and Transplanting Trees and Shrubs(St. Paul, MN: University of Minnesota Extension Service, 1999) Gillman, Jeffrey H.; Johnson, Gary R.Item Validation of Wetland Mitigation in Abandoned Borrow Areas – Phase II(Minnesota Department of Transportation, 2016-03) Johnson, Kurt W.Road construction in northeast Minnesota often causes wetland impacts that require compensatory mitigation. Borrow areas excavated for road construction material can be developed into wetland mitigation sites if hydric vegetation, hydric soils and adequate hydrology are provided. Fourteen wetland mitigation sites were constructed north of Virginia, Minnesota along the U.S. Trunk Highway 53 reconstruction project corridor. The sites were established with the goal of mitigating for project impacts to seasonally flooded basin, fresh meadow, shallow marsh, shrub swamp, wooded swamp, and bog wetlands. Monitoring results indicate that the 14 mitigation sites range in their potential to receive wetland mitigation credit. All but one of the sites consistently meet wetland hydrology criteria. The sites contain a variety of plant communities dominated by wet meadow, sedge meadow, and shallow marsh. Floristic Quality Assessment (FQA) condition categories for the sites range from "Poor" to "Exceptional." Invasive plant species, particularly reed canary grass and narrow leaf cattail, are present on a number of sites and should be controlled. Tamarack and black spruce plantings have been successful on some of the drier areas and should be expanded to increase the quality and potential mitigation credit for other sites. These sites have shown the potential for creating mitigation wetlands in abandoned borrow pits in conjunction with highway construction. Adaptive management, particularly water level regulation, early invasive species control, tree planting, and continued long-term annual monitoring can make mitigation sites like these successful options for wetland mitigation credit. Continued site monitoring to determine potential for mitigation credit is recommended.