Browsing by Subject "Science Education"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Active Learning in STEM & Biology Learning and Teaching in the Laboratory Context(2021-07) Gonsar, NgawangThis three-paper dissertation addresses the experience and the implementation of evidence-based learning practices in science, technology, engineering, and mathematics (STEM)/biology education. Study 1 explored instructional strategies and student perceptions and preferences for various teaching practices in graduate and undergraduate classrooms across three STEM colleges. The study revealed that students desired more time for active learning practices and wanted fewer lectures than they currently experienced. Upon closer probing, findings suggest that educators should employ various active learning practices in their classrooms. Finally, the study provides suggestions for instructors teetering on the brink of adoption to leap into active learning.Study 2A and 2B narrowed the focus to learning in groups, which is the most utilized active learning strategy in biology courses. These studies examined how grouping strategies (self-selected vs instructor-assigned academically heterogeneous groups) impact first-year biology students' experience, performance, and cooperative learning participation in a biology laboratory course with extensive group work through a mixed-methods approach. There were similar effects on student perceptions from intervening in group strategies. However, students found substantial value in their group experiences in developing both academic and social skills. At the same time, students experienced diminishing concerns regarding their group members over time. When examining cooperative learning, there were many similarities but a greater frequency of cooperative learning elements when controlled for teacher's influence and the curriculum activity. There was also a small difference in the scores of assignments completed as a group. These findings in totality have implications on how instructors can best form groups that maximize student learning while improving students’ biology laboratory experience. The study findings suggest that once pedagogical approach and curriculum are controlled, there is evidence that academically heterogeneous groups, as opposed to self-selected groups, allow for more cooperative learning opportunities for first-year biology students.Item Conceptualizing In-service Secondary School Science Teachers’ Knowledge Base for Promoting Understanding about the Science of Global Climate Change(2016-12) Bhattacharya, DevaratiEfforts to adapt and mitigate the effects of global climate change (GCC) have been ongoing for the past two decades and have become a major global concern. However, research and practice for promoting climate literacy and understanding about GCC have only recently become a national priority. The National Research Council (NRC), has recently emphasized upon the importance of developing learners’ capacity of reasoning, their argumentation skills and understanding of GCC (Framework for K-12 Science Education, National Research Council, 2012). This framework focuses on fostering conceptual clarity about GCC to promote innovation, resilience, and readiness in students as a response towards the threat of a changing environment. Previous research about teacher understanding of GCC describes that in spite of the prevalent frameworks like the AAAS Science Literacy Atlas (AAAS, 2007) and the Essential Principles for Climate Literacy (United States Global Climate Research Program, 2009; Bardsley, 2007), most learners are challenged in understanding the science of GCC (Michail et al., 2007) and misinformed perceptions about basic climate science content and the role of human activities in changing climate remain persistent (Reibich and Gautier, 2006). Our teacher participants had a rather simplistic knowledge structure. While aware of climate change, teacher participants lacked in depth understanding of how change in climate can impact various ecosystems on the Earth. Furthermore, they felt overwhelmed with the extensive amount of information needed to comprehend the complexity in GCC. Hence, extensive efforts not only focused on assessing conceptual understanding of GCC but also for teaching complex science topics like GCC are essential. This dissertation explains concept mapping, and the photo elicitation method for assessing teachers’ understanding of GCC and the use of metacognitive scaffolding in instruction of GCC for developing competence of learners in this complex science phenomenon.Item Examining the effects of integrated science, engineering, and nonfiction literature on student learning in elementary classrooms(2014-06) Tank, Kristina MaruyamaIn recent years there has been an increasing emphasis on the integration of multiple disciplines in order to help prepare more students to better address the complex challenges they will face in the 21st century. Exposing students to an integrated and multidisciplinary approach will help them to better understand the connections between subjects instead of as individual and separate subjects. Science, Technology, Engineering and Mathematics (STEM) Integration has been suggested as an approach that would model a multidisciplinary approach while also offering authentic and meaningful learning experiences to students. However, there is limited research on STEM integration in the elementary classroom and additional research is needed to better define and explore the effects of this integration for both students and science educators. With the recent recommendations for teaching both science and engineering in elementary classrooms (NRC, 2012), two common models include teaching science through inquiry and teaching science through engineering-design pedagogies. This study will explore both of these models as it seeks to better understand one piece of the larger issue of STEM and STEM integration by examining how the integration of science, engineering, and nonfiction literature affects students learning in elementary classrooms. This study employed an embedded mixed methods design to measure the effects of this integration on student learning in four fifth grade classrooms from the same elementary school. The findings revealed that the students who participated in the nonfiction reading instruction that was integrated with their science instruction showed a greater increase in all measures of student learning in both science and reading when compared to the control students. The findings from the integrated science, engineering and nonfiction literature revealed similar findings with the treatment students showing a greater increase in the measures of student learning in all three of the content areas. These results suggest that integrating nonfiction literature with science or science and engineering instruction can be an effective strategy in improving student learning in elementary classrooms.Item A follow-up study of Eco Education’s environmental service-learning program.(2010-11) Hobert, Thomas MiltonThe purpose of the study is to determine student views of the influence of the Eco Education Urban Stewards program’s impact on their involvement in community environmental initiatives. Eco Education is a non-profit organization in St. Paul that facilitates an urban, environmental, year-long science curriculum delivered in middle schools in Minnesota. The year-long program ends with an urban, environmental service-learning project. Ten high school students from the Inter District Downtown School who had completed Urban Stewards in middle school took a survey and were interviewed and compared with ten high school students who had a more traditional middle school science experience. Semi-structured oral interviews were conducted with each student. Transcriptions of the interviews were analyzed and compared to the survey results. The survey results were tabulated and given numerical values to compare the Eco Education and non-Eco Education students. Common themes and differences were discovered when comparing the survey results and interview transcriptions of the two groups. Urban Stewards students demonstrated more awareness of environmental issues, concerns and community projects but not by a significant amount.Item The Knowledge Building Approach to Science Education: A Problem-Solving Perspective(2019-09) Groos, DavidScience education is reasonably constructed around a vision of authentic scientific practices. Yet, this vision of science is clearly a construct as seen when viewing its changes throughout the last 120 years, as well as viewing it through different theoretical perspectives. While there are diverse descriptions of science and its enactment, going back to Dewey and Peirce, the mission of science is commonly considered to be about the advancement of theory through inquiry where problems serve a central function. Beyond the challenge of constructing an understanding of scientific inquiry as theory development where the diversity in perspectives of scientists is seen as essential, there is the challenge of devising pedagogy and approaches that effectively promote this vision. There are a rich mix of approaches working at solving different parts of this complex problem. One such approach is called, "knowledge building" (Scardamalia and Bereiter, 2006). This approach seeks to scaffold classroom communities such that they develop and grow into a complex community where progressive science-theory improvement emerges. It is considered that these sorts of communities where innovation is the norm have relevance beyond the fields of science and STEM: innovation and knowledge creation is becoming the essential practice of the knowledge age. The knowledge building approach is designed to support the growth of classroom communities that embody the essential nature of progressive scientific inquiry. To effectively support this kind of classroom community development, the unique assets and needs presented by the ever-increasing diversity of thinking and knowing that are emergents of the students' cultures, developmental levels, neurological diversities and iv networks of communities. Overall, this research sought to support and augment classrooms as they strive to grow into classroom communities of scientific inquiry. The research occurred in two stages. It first used philosophical methods to generate a simple, high-level model of problem-solving made possible by Popper's World-3 conception. This conception is a keystone in some epistemologies developed to support approaches aimed at helping students grow in knowledge-innovation practices. The visual problem-solving model that was developed seeks to provide students and teachers with a very simple yet flexible model allowing them to describe, analyze and reflect on the state of their community's knowledge improvement and through this understanding adaptively and effectively respond. The second stage of research utilized hybrid philosophical-empirical methods to develop a framework that describes science in terms of its mission to progressively improve theory through the iterative solving of and subsequent unfolding of new knowledge-problems. These research methods involved an iterative process where promising theories are tested on their ability to describe students' actual online knowledge-building discourse in a satisfying way. In this iterative process, empirical classroom data informed and yet also constrain the theory generation which was informed by diverse theoretical perspectives. These theoretical perspectives included for example, ideas of scientific practices, theories of design such as design thinking and understandings of classroom diversity as represented in the Next Generation Science Standards (NGSS Lead States, 2013) which were intentionally founded upon theories of v culturally responsive pedagogy. The developed framework seeks to scaffold teachers as they design and enact lessons aimed at growing communities of diverse scientists. Taken together, the products of this research seek to provide conceptual structures to aid the students and teachers in classroom communities as they seek to grow into complex communities of scientists.Item Supporting Academic Language Development in Elementary Science: A Classroom Teaching Experiment(2017-07) Jung, KarlAcademic language is the language that students must engage in while participating in the teaching and learning that takes place in school (Schleppegrell, 2012) and science as a content area presents specific challenges and opportunities for students to engage with language (Buxton & Lee, 2014; Gee, 2005). In order for students to engage authentically and fully in the science learning that will take place in their classrooms, it is important that they develop their abilities to use science academic language (National Research Council, 2012). For this to occur, teachers must provide support to their students in developing the science academic language they will encounter in their classrooms. Unfortunately, this type of support remains a challenge for many teachers (Baecher, Farnsworth, & Ediger, 2014; Bigelow, 2010; Fisher & Frey, 2010) and teachers must receive professional development that supports their abilities to provide instruction that supports and scaffolds students’ science academic language use and development. This study investigates an elementary science teacher’s engagement in an instructional coaching partnership to explore how that teacher planned and implemented scaffolds for science academic language. Using a theoretical framework that combines the literature on scaffolding (Bunch, Walqui, & Kibler, 2015; Gibbons, 2015; Sharpe, 2001/2006) and instructional coaching (Knight, 2007/2009), this study sought to understand how an elementary science teacher plans and implements scaffolds for science academic language, and the resources that assisted the teacher in planning those scaffolds. The overarching goal of this work is to understand how elementary science teachers can scaffold language in their classroom, and how they can be supported in that work. Using a classroom teaching experiment methodology (Cobb, 2000) and constructivist grounded theory methods (Charmaz, 2014) for analysis, this study examined coaching conversations and classroom instruction to identify and understand what scaffolds are planned and implemented, and how that planning and implementation occurred through an instructional coaching partnership. Findings from this study showed the elementary science teacher planned and implemented a number of scaffolds for science academic language, focusing primarily on the use of sentence starters as a scaffolding strategy. The findings also indicated that the instructional coaching partnership played a vital role as the main resource that assisted the planning of scaffolds. These findings provide insights into the types of scaffolds that elementary science teachers can implement to scaffold science academic language, and the role that instructional coaching can play in supporting teachers as they work to provide instruction that scaffolds their students’ language use and development.