Browsing by Subject "RAFT"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Poly(isoprenecarboxylates) from Glucose via Anhydromevalonolactone(2018-01-04) Ball-Jones, Nicolas; Hoye, Thomas R.; Fahnhorst, Grant W.; hoyex001@umn.edu; Hoye, Thomas R.These are raw data files obtained during development of the following manuscript: Ball-Jones, N. R.; Fahnhorst, G. W.; Hoye, T.R. "Poly(isoprenecarboxylates) from Glucose via Anhydromevalonolactone" ACS Macro Lett. 2016, 1128–1131. The abstract of this document is the following, "A short and efficient synthesis of a series of isoprenecarboxylic acid esters and their corresponding polymers is presented. The base-catalyzed eliminative ring opening of anhydromevalonolactone (3) provides isoprenecarboxylic acid (6-H), which was further transformed to the isoprenecarboxylic acid esters. Reversible addition–fragmentation chain-transfer (RAFT) polymerization was used to synthesize high molecular weight (>100 kg mol–1) poly(isoprenecarboxylates) with dispersities (Đ) of ca. 1.5. The glass transition temperatures (Tg) and entanglement molecular weights (Me) of the poly(isoprenecarboxylates) were determined and showed similar trends to the Tg and Me values for analogous poly(acrylate esters). These new glucose-derived materials could provide a sustainable alternative to poly(acrylates).Item Renewable polymer materials from bicyclic sugar derivatives(2016-05) Gallagher, JamesSugar derivatives are excellent candidates for the building blocks of biobased plastics. This thesis focuses on the preparation of new monomers derived from bicyclic sugar derivatives and the polymerization thereof to afford useful polymer materials. The first area of research presented is the preparation of two new monovinyl monomers acetylated methacrylic isosorbide and acetylated acrylic isosorbide (AMI and AAI). PAMI and PAAI prepared by radical polymerization of were found to have high Tg and good thermal stability. Reversible Addition Fragmentation chain Transfer polymerization was used to prepare PAMI and PAAI block copolymer samples with low Tg polyacrylates. These block copolymers were investigated as pressure sensitive adhesives and were found to exhibit desirable adhesive properties consistent with high shear removable pressure sensitive adhesives. The second area of research focuses on the synthesis and polymerization of two new dimethacrylate monomers from glucarodilactone and mannarodilactone (GDMA and MDMA). Thermally initiated free radical polymerization of these monomers in the bulk afforded highly crosslinked and rigid thermoset materials. Tensile testing of PGDMA demonstrated mechanical properties similar to those reported for commercially available poly(dimethacrylates) from rigid monomers. PGDMA was found to degrade to water-soluble components after 17 days in the presence of base, but remained stable under acidic and neutral conditions. Applications investigated were P(GDMA-co-MDMA) coatings and copolymer microspheres from GDMA and methyl methacrylate.