Browsing by Subject "Porous pavements"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Permeable Pavement for Road Salt Reduction(Minnesota Department of Transportation, 2020-06) Erickson, Andrew J.; Gulliver, John S.; Herb, William R.; Janke, Benjamin D.; Nguyen, Nam K.Road salt and particularly sodium chloride is used for de-icing roadways during winter months in cold climates but can have a negative impact on the environment. This report describes research that investigated the use of permeable pavements that are not treated with road salt as an alternative to impermeable pavement surfaces that are treated with road salt. Various methods were used to quantify the snow and ice cover on impermeable and permeable pavements under near-identical but various environmental conditions. It must be noted, however, that impermeable pavements including the ones in this study are typically managed with road salt while permeable pavements are not. However, the following conclusions can be drawn from previous research and data collected during this project: 1) permeable pavements and the porous subbase beneath them function as thermal insulators, preventing heat transfer from the surface to below and vice versa; 2) permeable pavements that are clogged due to sediment accumulation or collapsed pores provide no benefit compared to impermeable pavement; 3) more sites with impermeable pavement had more friction than sites with permeable pavement; 4) more sites with impermeable pavement had less snow and/or ice cover than sites with permeable pavements; and 5) more sites with impermeable pavement had pooled water than sites with permeable pavements. This demonstrates the primary winter benefit of permeable pavements: meltwater can infiltrate through permeable pavements and prevent refreezing. Refreezing of meltwater on impermeable pavements creates dangerously slippery conditions which can be avoided with functional permeable pavements.Item Permeable Pavements in Cold Climates: State of the Art and Cold Climate Case Studies(Center for Transportation Studies, University of Minnesota, 2015-06) Weiss, Peter T.; Kayhanian, Masoud; Khazanovich, Lev; Gulliver, John S.This document is an extensive review of full-depth permeable pavements including porous asphalt, pervious concrete, and permeable interlocking concrete pavers (PICP). Also included is a brief section on articulated concrete blocks/mats. The main topics, which have been divided into chapters, include structural and mix design, hydrologic design, hydraulic performance (i.e. infiltration capacity), maintenance needs/frequency/actions, the impact of permeable pavement on water quality, results of a highway shoulder feasibility study, knowledge gaps, and several cold climate case studies from the United States and Canada. While progress has recently been made with the relatively new permeable pavement technology, researchers have also identified many unresolved issues that are not well understood. These include a methodology to measure subgrade infiltration rates, filling data gaps related to structural integrity, construction, and related issues associated with permeable pavements, determining what maintenance activities are most effective on various pavement types and how frequently specific maintenance actions should be performed, a better understanding of the processes involved in the observed reduction of contaminant concentrations in stormwater flowing through permeable pavements, and a better understanding of the performance of permeable pavements over a time frame that better corresponds with a life-span of 20 years.Item Stormwater BMP Inspection and Maintenance Resource Guide(Minnesota Department of Transportation, 2024-06) Erickson, Andrew J.; Gulliver, John S.; Weiss, Peter T.Stormwater treatment practices, often referred to as stormwater best management practices (BMPs), require a substantial commitment to maintenance, including regular inspections and assessments. Existing regulations require governmental units to develop a systematic approach for ongoing inspection and maintenance to ensure that they are achieving their desired treatment goals. A lack of maintenance will lead to a decrease in BMP performance and will often result in expensive rehabilitation or rebuild. In 2009, SRF Consulting produced a maintenance guide for the Local Road Research Board (LRRB) (Marti, et al. 2009). In 2023, the LRRB commissioned the University of Minnesota St. Anthony Falls Laboratory to update this guide to reflect new best practices. The Stormwater BMP Inspection and Maintenance Resource Guide (the Guide) is a supplement to the Minnesota Stormwater Manual (MPCA 2023) and will help the reader plan for recommended long-term maintenance activities through guidance on visual inspection, testing, and monitoring methods for identifying what maintenance is needed, and when it is needed. The Guide describes inspection and maintenance for constructed stormwater ponds (both dry and wet) and wetlands, underground sedimentation practices, infiltration practices, filtration practices, bioretention practices, permeable pavements, and stormwater harvesting. In addition, the Guide includes a section on Meeting Stormwater Management Objectives, which provides information on achieving reductions for sediment, phosphorus, nitrogen, metals, chloride, pathogens, and organic chemicals. The Guide also includes Field Inspections Resources, which contains inspection checklists and maintenance activity recommendations for all of the practices listed above.