Repository logo
Log In

University Digital Conservancy

University Digital Conservancy

Communities & Collections
Browse
About
AboutHow to depositPolicies
Contact

Browse by Subject

  1. Home
  2. Browse by Subject

Browsing by Subject "Polyester"

Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Supporting data for Synthesis, microstructure, and properties of high molar mass polyglycolide copolymers with isolated methyl defects
    (2021-06-15) Altay, Esra; Jang, Yoon-Jung; Kua, Xiang Qi; Hillmyer, Marc; hillmyer@umn.edu; Hillmyer, Marc; University of Minnesota, Hillmyer Lab, Department of Chemistry
    An efficient, fast and reliable method for the synthesis of high molar mass polyglycolide (PGA) in bulk using bismuth (III) subsalicylate through ring-opening transesterification polymerization is described.The difference between the crystallization (Tc ≈ 180 °C) / degradation (Td ≈ 245 °C) temperatures and the melting temperature (Tm ≈ 222 °C) significantly impacts the ability to melt process PGA homopolymer. To expand these windows, the effect of copolymer microstructure differences through incorporation of methyl groups in pairs using lactide or isolated using methyl glycolide (10% methyl) as comonomers on the thermal, mechanical and barrier properties were studied. Structures of copolymers were characterized by Nuclear Magnetic Resonance (1H and 13C NMR) spectroscopies. Films of copolymers were obtained, and the microstructural and physical properties were analyzed. PGA homopolymers exhibited approximately 30 °C difference between Tm and Tc, which increased to 50 °C by incorporating up to 10% methyl groups in the chain while maintaining overall thermal stability. Oxygen and water vapor permeation values of solvent cast non-oriented films of PGA homopolymers were found to be 4.6 (cc.mil.m-2.d-1.atm-1) and 2.6 (g.mil.m-2.d-1.atm-1), respectively. Different methyl distributions in the copolymer sequence, provided through either lactide or methyl glycolide impacted the resulting barrier properties. At 10% methyl insertion using lactide as a comonomer significantly increased both O2 (32 cc.mil.m-2.d-1.atm-1) and water vapor (12 g.mil.m-2.d-1.atm-1) permeation. However, when methyl glycolide was utilized for methyl insertion at 10% Me content, excellent barrier properties for both O2 (2.9 cc.mil.m-2.d-1.atm-1) and water vapor (1.0 g.mil.m-2.d-1.atm-1) were achieved.

UDC Services

  • About
  • How to Deposit
  • Policies
  • Contact

Related Services

  • University Archives
  • U of M Web Archive
  • UMedia Archive
  • Copyright Services
  • Digital Library Services

Libraries

  • Hours
  • News & Events
  • Staff Directory
  • Subject Librarians
  • Vision, Mission, & Goals
University Libraries

© 2025 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer.
Policy statement | Acceptable Use of IT Resources | Report web accessibility issues