Browsing by Subject "Pedestrian actuated controllers"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Advances in pedestrian travel monitoring: Temporal patterns and spatial characteristics using pedestrian push-button data from Utah traffic signals(Journal of Transport and Land Use, 2021) Humagain, Prasanna; Singleton, Patrick A.In this study, we advanced pedestrian travel monitoring using a novel data source: pedestrian push-button presses obtained from archived traffic signal controller logs at more than 1,500 signalized intersections in Utah over one year. The purposes of this study were to: (1) quantify pedestrian activity patterns; (2) create factor groups and expansion/adjustment factors from these temporal patterns; and (3) explore relationships between patterns and spatial characteristics. Using empirical clustering, we classified signals into five groups, based on normalized hourly/weekly counts (each hour’s proportion of weekly totals, or the inverse of the expansion factors), and three clusters with similar monthly adjustment factors. We also used multinomial logit models to identify spatial characteristics (land use, built environment, socio-economic characteristics, and climatic regions) associated with different temporal patterns. For example, we found that signals near schools were much more likely to have bimodal daily peak hours and lower pedestrian activity during out-of-school months. Despite these good results, our hourly/weekday patterns differed less than in past research, highlighting the limits of existing infrastructure for capturing all kinds of activity patterns. Nevertheless, we demonstrated that signals with push-button data are a useful supplement to existing permanent counters within a broader pedestrian traffic monitoring program.Item Assessing the Impact of Pedestrian-Activated Crossing Systems(Minnesota Department of Transportation, 2020-05) Hourdos, John; Dirks, Peter; Lehrke, Derek; Parikh, Gordon; Davis, Gary; Cheong, ChristopherPedestrian-Activated Crossing (PAC) systems have been shown to have a generally positive impact on driver yield rates. However, there has been insufficient research on the effect PAC treatments have on pedestrian crash rates, and there is little guidance as to when and where each treatment should be used. This study estimates the effects of PACs on pedestrian crash rates using Monte Carlo simulation and examines the relationships between driver yield rates and a variety of treatments and site designs by conducting an observational study using video data from 34 locations. The simulation outcomes suggests that while the percentage of yielding drivers might be a useful indicator of pedestrian level of service, it is less helpful as safety surrogate. This could be because a driver?s yielding to a pedestrian, as observed in field studies, might not be the same behavior as a driver attempting to stop during a vehicle/pedestrian conflict. The observational study shows that the number of lanes to cross at a crossing is positively correlated with the rate at which pedestrians activate the system, but it is not correlated with the delay. Additionally, the study showed that the effect of PAC systems is most pronounced at sites with a higher number of movements conflicting with the crossing or poor visibility from upstream without signs warning drivers of an upcoming crosswalk.