Browsing by Subject "Pavement cracking"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Cost/Benefit Analysis of the Effectiveness of Crack Sealing Techniques(Minnesota Department of Transportation., 2019-06) Barman, Manik; Munch, Jared; Arepalli, Uma MCrack sealing is an important preventive treatment in the pavement preservation program. To achieve a cost-effective crack seal, it is important to select a proper crack sealing method. While Minnesota usually seals cracks in asphalt pavements, there is no clear consensus on the most appropriate crack sealing method for a specific job. This study focused on developing a guideline so that a cost-effective crack sealing method could be chosen based on pavement type, functional condition, pavement age, and traffic volume etc. This study includes a literature review, online survey, field performance data collection and analysis, and development of a guideline. The effectiveness of the crack seals was determined using a benefit-cost analysis. Two decision trees were developed for choosing the most appropriate crack sealing method. The first, which can be used in MnDOT’s pavement management system, needs information such as crack severity, pavement type (new vs overlay), pavement analysis period and design life, traffic level, and crack seal occurrence number. The second decision tree, which is a simplified version of the first and can be used by the preventive maintenance crews and requires less information: crack severity, traffic level, and crack sealing occurrence number.Item Investigation of Low Temperature Cracking in Asphalt Pavements National Pooled Fund Study – Phase II(Minnesota Department of Transportation, 2012-08) Marasteanu, Mihai; Buttlar, William; Bahia, Hussain; Williams, Christopher; Moon, Ki Hoon; Teshale, Eyoab Zegey; Falchetto, Augusto Cannone; Turos, Mugurel; Dave, Eshan; Paulino, Glaucio; Ahmed, Sarfraz; Leon, Sofie; Braham, Andrew; Behnia, Behzad; Tabatabaee, Hassan; Velasquez, Raul; Arshadi, Amir; Puchalski, Sebastian; Mangiafico, Salvatore; Buss, Ashley; Bausano, Jason; Kvasnak, AndreaThe work detailed in this report represents a continuation of the research performed in phase one of this national pooled fund study. A number of significant contributions were made in phase two of this comprehensive research effort. Two fracture testing methods are proposed and specifications are developed for selecting mixtures based on fracture energy criteria. A draft SCB specification, that received approval by the ETG and has been taken to AASHTO committee of materials, is included in the report. In addition, alternative methods are proposed to obtain mixture creep compliance needed to calculate thermal stresses. Dilatometric measurements performed on asphalt mixtures are used to more accurately predict thermal stresses, and physical hardening effects are evaluated and an improved model is proposed to take these effects into account. In addition, two methods for obtaining asphalt binder fracture properties are summarized and discussed. A new thermal cracking model, called "ILLI-TC," is developed and validated. This model represents a significant step forward in accurately quantifying the cracking mechanism in pavements, compared to the existing TCMODEL. A comprehensive evaluation of the cyclic behavior of asphalt mixtures is presented, that may hold the key to developing cracking resistant mixtures under multiple cycles of temperature.Item A Mechanistic Design Approach for Graphite Nanoplatelet (GNP) Reinforced Asphalt Mixtures for Low-Temperature Applications(Minnesota Department of Transportation, 2018-01) Le, Jia-Liang; Marasteanu, Mihai; Hendrickson, RebeccaThis report explores the application of a discrete computational model for predicting the fracture behavior of asphalt mixtures at low temperatures based on the results of simple laboratory experiments. In this discrete element model, coarse aggregates are explicitly represented by spheres, and these spheres are connected by bonds representing the fine aggregate mixture, a.k.a. FAM, (i.e. asphalt binder with the fine-size aggregates). A literature review examines various methods of computational modeling of asphalt materials, as well as the application of nanomaterials to asphalt materials. Bending beam rheometer (BBR) tests are performed to obtain the mechanical properties of the fine aggregate mixture (FAM) at low temperatures. The computational model is then used to simulate the semi-circular bend (SCB) tests of the mixtures. This study considers both the conventional asphalt materials and graphite nanoplatelet (GNP) reinforced asphalt materials. The comparison between the simulated and experimental results on SCB tests shows that by employing a softening constitutive model of the FAM the discrete element model is capable of predicting the entire load-deflection curve of the SCB specimens. Based on the dimensional analysis, a parametric study is performed to understand the influence of properties of FAM on the predicted behavior of SCB specimens.Item Optimizing Asphalt Mixtures for Low-volume Roads in Minnesota(Minnesota Department of Transportation, 2023-08) Barman, Manik; Dhasmana, Heena; Manickavasagan, Vishruthi; Marasteanu, MihaiMinnesota has a large number of low-volume asphalt roads. These roads typically fail because of environmental factors, such as frigid temperatures, freeze-thaw cycles, and seasonal and daily temperature variations. The goal of this study was to suggest modifications to asphalt mixture designs currently used for low-volume roads in Minnesota to improve the resistance of the mixes against the environmentally driven distresses. The study was conducted by accomplishing multiple tasks, such as a literature review, online survey, fieldwork studying the cause of the asphalt pavement distresses, laboratory work comparing asphalt mixtures designed with Superpave-4, Superpave-5, and regressed air voids methods, and studying the field compaction of Superpave-5 mixes. The mechanical performance of the asphalt mixes was studied by conducting Disc-Shaped Compact Tension (DCT), Indirect Tensile Strength (ITS), and Dynamic Modulus (DM) tests. The study included both laboratory- and plant-produced mixes. The study found that asphalt layers for the low-volume roads did not get enough densification, which augments environmentally driven distresses, such as thermal cracks, and longitudinal joint cracks. The Superpave-5 method holds considerable promise for the design of asphalt mixtures for low-volume roads in Minnesota, which may likely increase the asphalt layer densification and mitigate some of the common distresses.