Browsing by Subject "PCET"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Insights into Proton-Coupled Electron Transfer from Computation(2014-06) Provorse, MakenzieProton-coupled electron transfer (PCET) is utilized throughout Nature to facilitate essential biological processes, such as photosynthesis, cellular respiration, and DNA replication and repair. The general approach to studying PCET processes is based on a two-dimensional More O'Ferrall-Jencks diagram in which electron transfer (ET) and proton transfer (PT) occur in a sequential or concerted fashion. Experimentally, it is difficult to discern the contributing factors of concerted PCET mechanisms. Several theoretical approaches have arisen to qualitatively and quantitatively investigate these reactions. Here, we present a multistate density functional theory (MSDFT) method to efficiently and accurately model PCET mechanisms. The MSDFT method is validated against experimental and computational data previously reported on an isoelectronic series of small molecule self-exchange hydrogen atom transfer reactions and a model complex specifically designed to study long-range ET through a hydrogen-bonded salt-bridge interface. Further application of this method to the hydrogen atom abstraction of ascorbate by a nitroxyl radical demonstrates the sensitivity of the thermodynamic and kinetic properties to solvent effects. In particular, the origin of the unusual kinetic isotope effect is investigated. Lastly, the MSDFT is employed in a combined quantum mechanical/molecular mechanical (QM/MM) approach to explicitly model PCET in condensed phases.