Browsing by Subject "Nutrient management"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Is my barn eco-friendly?(University of Minnesota, Extension Service., 2006) Gilkerson, BetsyItem Nitrogen Management for Corn Following Alfalfa: Field, Literature, and Geographic Analyses(2013-12) Yost, Matt AlanFirst- and second-year corn (Zea mays L.) following alfalfa (Medicago sativa L.) often require less supplemental N than corn grown continuously or following soybean [Glycine max (L.) Merr.]. The results of seven on-farm trials indicated that alfalfa can provide the entire N requirement of first-year corn no-till planted following alfalfa terminated in the fall. Eight other on-farm trials also indicated that first-year corn following alfalfa often does not require supplemental N (fertilizer or manure). The conclusion that first-year corn following alfalfa often requires no fertilizer N has been supported for decades, yet no research has identified site-specific conditions that cause first-year corn to respond to supplemental fertilizer N. The most widely used predictive test, the presidedress soil nitrate test (PSNT), had limited success in identifying response to N when trials from this study were combined with literature research; the test was 55% accurate across 94 site-years. An end-of-season test used to assess N supply to corn, the corn stalk nitrate test (CSNT), also was not successful in 11 trials at identifying when first-year corn would have required fertilizer N. An analysis of the literature was conducted to identify site-specific conditions that cause first-year corn following alfalfa to respond to N. Soil texture and alfalfa termination timing on medium-textured soils were significant covariates for identifying responsiveness to fertilizer N in first-year corn. First-year corn following alfalfa rarely required fertilizer N when alfalfa harvested for ¡Ý2 yr was fall-terminated on medium-textured soils; corn following alfalfa harvested 1 yr responded more frequently. The frequency of response to fertilizer N increased greatly when alfalfa was grown on coarse- or fine-textured soils and when alfalfa was terminated in the spring on medium-textured soils. For these conditions, combinations of alfalfa stand age and weather conditions explained much of the variation in whether a site would respond to N and the economically optimum N rate (EONR) at various price ratios (PRs) of fertilizer N/corn grain. The regression models developed to predict fertilizer N response appear robust, but require independent validation. Alfalfa also provides N to the second consecutive corn crop following alfalfa termination. Results from 28 on-farm trials in Minnesota and Iowa revealed that second-year corn required fertilizer N only 50% of the time. The same trend occurred when these trials were combined with 39 trials in the literature. The PSNT had higher accuracy for second-year corn (65%) than for first-year corn, but improvements in accuracy are still necessary in order for this test to be a reliable tool for growers. A geographic analysis revealed that growers in the U.S. Corn Belt region of the upper midwestern United States (North Dakota, South Dakota, Nebraska, Minnesota, Iowa, and Wisconsin) rotate alfalfa more frequently than in other parts of this region and that alfalfa phase length, soil texture, and year affect the type of crops grown for 2 yr following alfalfa termination. Supplemental files include data and references used for the literature analysis (Supplemental Table S4.1; Supplement S4.2), data used for analysis of second-year corn response to N (Supplemental Table S5.1), and alfalfa hectare estimates by state and year for the geographic analysis (Supplemental Table S6.1).Item R Code, Data, and Output Supporting: Nutrient Data from U.S. Manure Systems(2024-06-27) Bohl Bormann, Nancy; Wilson, Melissa; Cortus, Erin; Silverstein, Kevin; Janni, Kevin; Gunderson, Larry; nancy.bohl.bormann@gmail.com; Bohl Bormann, NancyThis repository contains R code, processed data, and associated outputs supporting the results reported in: Bohl Bormann, 2024. Manure Nutrient Data Compilation and Analysis for Agronomic and Environmental Applications. PhD Dissertation.