Browsing by Subject "Named Entity Recognition"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Improving Search via Named Entity Recognition in Morphologically Rich Languages – A Case Study in Urdu(2018-02) Riaz, KashifSearch is not a solved problem even in the world of Google and Bing's state of the art engines. Google and similar search engines are keyword based. Keyword-based searching suffers from the vocabulary mismatch problem -- the terms in document and user's information request don't overlap. For example, cars and automobiles. This phenomenon is called synonymy. Similarly, the user's term may be polysemous -- a user is inquiring about a river's bank, but documents about financial institutions are matched. Vocabulary mismatch exacerbated when the search occurs in Morphological Rich Language (MRL). Concept search techniques like dimensionality reduction do not improve search in Morphological Rich Languages. Names frequently occur news text and determine the "what," "where," "when," and "who" in the news text. Named Entity Recognition attempts to recognize names automatically in text, but these techniques are far from mature in MRL, especially in Arabic Script languages. Urdu is one the focus MRL of this dissertation among Arabic, Farsi, Hindi, and Russian, but it does not have the enabling technologies for NER and search. A corpus, stop word generation algorithm, a light stemmer, a baseline, and NER algorithm is created so the NER-aware search can be accomplished for Urdu. This dissertation demonstrates that NER-aware search on Arabic, Russian, Urdu, and English shows significant improvement over baseline. Furthermore, this dissertation highlights the challenges for researching in low-resource MRL languages.Item Natural Language Processing Methods to Automatically Parse Eligibility Criteria in Dietary Supplements Clinical Trials(2020-08) Bompelli, AnushaDietary supplements (DSs) have been widely used in the U.S. and evaluated in clinical trials as potential interventions for various diseases. However, many clinical trials face challenges in recruiting enough eligible patients in a timely fashion, causing delays or even early termination. Using electronic health records to find eligible patients who meet clinical trial eligibility criteria has been shown as a promising way to assess recruitment feasibility and accelerate the recruitment process. Natural Language Processing (NLP) techniques have been used extensively to extract concepts from the clinical trial eligibility criteria. However, a significant obstacle is identifying an efficient Named Entity Recognition (NER) system to parse the clinical trial eligibility criteria. The study comprises of two parts. In the first part of the study, the objective was to (1) understand data elements associated with DS trials’ eligibility criteria and assess if they can be mapped to OMOP Common Data Model (CDM); (2) develop and evaluate NLP methods, especially deep learning-based models, for extracting eligibility criteria data elements. We analyzed the eligibility criteria of 100 randomly selected DS clinical trials and identified both computable and non-computable criteria. We mapped annotated entities to OMOP Common Data Model (CDM) with novel entities (e.g., DS). We also evaluated a deep learning model (Bi-LSTM-CRF) for extracting these entities on CLAMP platform, with an average F1 measure of 0.601. This study shows the feasibility of automatic parsing of the eligibility criteria following OMOP CDM for future cohort identification. In the second part of the study, the objective was to examine the performance of standard open-source clinical NLP systems for the task of Named Entity Recognition (NER) for a corpus outside of the domain for which these systems were developed. we used NLP-ADAPT (Artifact Discovery and Preparation Toolkit) to compare existing biomedical NLP systems (BiomedICUS, CLAMP, cTAKES and MetaMap) and their Boolean ensemble to identify entities of the eligibility criteria of 150 randomly selected Dietary Supplement (DS) clinical trials. We created a custom mapping of the gold standard annotated entities to UMLS semantic types to align with annotations from each system. All systems in NLP-ADAPT used their default pipelines to extract entities based on our custom mappings. The systems performed reasonably well in extracting UMLS concepts belonging to the semantic types Disorders and Chemicals and Drugs. Among all systems, cTAKES was the highest performing system for Chemicals and Drugs and Disorders semantic groups and BioMedICUS was the highest performing system for Procedures, Living Beings, Concepts and Ideas, and Devices. Whereas, the Boolean ensemble outperformed individual systems. This study sets a baseline that can be potentially improved with modifications to the NLP-ADAPT pipeline.